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Objective:

This objective of this research is to explore novel approaches and methods to analytically assess the finite-time
performance of local search algorithms for large-scale, intractable discrete optimization problems.

Approach:

Threshold analysis considers threshold values for the objective function of a discrete optimization problem, and hence, as
these threshold values are incrementally decreased towards the globally optimal objective function value, the performance
of the algorithm can be assessed and measured. This project will be focused on 3 approaches. 1) describing the threshold
analysis framework for measuring the performance of local search algorithms for discrete optimization problems, 2)
introducing and studying how a new design of experiment, termed designed replication, can be used to estimate and
compute these performance measures, 3) studying how antithetic and common random number streams, control variates
and logistics regression statistical procedures can be used to improve the estimation and application of these performance
measures, and 4) studying the application of these performance measures to several local search algorithms such as
simulated annealing, genetic algorithms and tabu searches for large-scale, hard discrete optimization problems.

Progress:

Year: 2007 Month: 01
Not required at this time.

Year: 2008 Month: 02

First result quantifies effectiveness of local search algorithms on discrete oprimization problems by the choice of
neighborhood functions. The second result considers a homeland security design and optimization problem termed
Sequential Stochastic Security Design problem. which models security and bag-screening operations. The third result
introduces a discrete optimization problem framework for obtaining optimal subsets of solutions from large sets of Pareto
optimal solutions.

Year: 2009 Month: 02

The primary research activities focused on exploring new approaches to analytically assess the finite-time performance of
local search algorithms for large-scale, intractable discrete optimization problems (DOPs), and utilizing such models to
address homeland security and military problems. Convergence results for local search algorithms applied to DOPs
typically require the number of iterations to approach infinity. Finite-time performance results are more useful, but typically
are more difficult to obtain. A tradeoff between these two extreme objectives is the finite time performance of such
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Progress:

Year: 2009 Month: 02

algorithms in visiting near-optimal solutions. To achieve this, the concept of a beta-acceptable solution is used to measure
the effectiveness of local search algorithms. To provide a rigorous analysis of this approach, Markov chain state pooling is
introduced to obtain estimators for the expected number of iterations to visit such near-optimal solutions. Convergence
results for the resulting estimator are reported. Extensive computational results are reported with the Lin-Kernighan-
Helsgaun algorithm applied to medium and large traveling salesman problem instances taken from TSPLIB. The results of
this research provide a framework for efficiently comparing different local search algorithms in their effectiveness in

reaching sub-optimal solutions.

Year: 2009 Month: 12 Final

This project explored novel approaches and methods to analytically assess the finite-time performance of local

search algorithms for large-scale, intractable discrete optimization problems. The results obtained provide finitetime and
asymptotic (near globally optima) performance measures for the effectiveness of local search algorithms. These
performance measures capture properties of the number of iterations that a local search algorithm requires to visit (for the
first time) a solution with objective function value at or below various thresholds. The resulting measures provide both
theoretical and estimation tools for analyzing and designing a broad spectrum of local search algorithms for intractable,
large-scale, discrete optimization problems, as well as for assessing the appropriateness of specific local search
algorithms for particular classes of problems. The primary applications considered for these methodologies included
scheduling, circuit, and perimeter screening problems.
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4
EXECUTIVE SUMMARY

The research conducted under this grant focused on the mathematical analysis of local search algorithms for
hard, large-scale, discrete optimization problems, multi-criteria post-optimality analysis, and stochastic
dynamic optimization problems. The primary technical accomplishments achieved include

i) quantifying the relationship between the size of neighborhood functions and the number of local
optima over generic solution spaces that model hard discrete optimization problem landscapes,

if) designing a methodology to estimate the expected number of iterations to visit a B-acceptable
solution using local search algorithms for hard discrete optimization problems,

iii)introducing a discretc optimization framework for obtaining optimal subsets of solutions from large
sets of Parcto optimal solutions,

iv) formulating and analyzing the Sequential Stochastic Security Design Problem, which models the
screening operations of passengers and carry-on baggage in an aviation security system.

v) identifying a real-time methodology for screening objects that are attempting to enter and harm a
secure area under a binary screening paradigm and showing how this methodology can be used to
provide insights into the operation and performance of such real-time systems.

vi) introducing a statistical framework for comparing the performance of hcuristics for hard discrete
optimization problems.

All the accomplishments resulting form the research reported under this grant are documented in several
archival journal articles and book chapters. Many of the results have also bcen presented at national and
international conferences, and have won awards for their contribution.

Three Ph.D. dissertations werc complcted during the period of the grant. Dr. Alexander G. Nikolaev
successfully defended and submittcd his Ph.D. dissertation "Stochastic Sequential Resource Allocation and
Passenger Assignment in Aviation Security Systems " in August 2008. At prescnt, he is a visiting assistant
professor at Northwestern University. Dr. Gio K. Kao successfully defended and submitted his Ph.D.
dissertation "Two Combinatorial Optimization Problems at the Intcrfacc of Computer Science and Operations
Research " in August 2008. At present, hc is on the technical staff at Sandia National Laboratory. Dr. Adrian
J. Lee successfully defendcd and submitted his Ph.D. dissertation "Optimality, Uncertainty, and Pcrformance
of Passenger Screening in Aviation Sccurity Systems" in May 2009. At present, he is a post-doctoral research
fellow at the University of Illinois at Chicago, in the Vishwamitra Research Institute.
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1. An Analysis of Neighborhood Functions on Generic Solution Spaces
Local search algorithms provide effective and efficient tools for addressing hard discrete optimization
problem instances that have very large solution spaces (i.c., exponentially many solutions with respect to the
input data size) (Aarts and Lenstra 1997). Local search algorithms iteratively search the solution space in an
cffort to find near-optimal solutions. Local search algorithms use a neighborhood function that spccifies
adjacent solutions, and hence, determincs how the solution space is traversed. When a local search algorithm
(with neighborhood function 7) is applied to an instance / of a discretc minimization problem (i.c., a solution
space and an objective function over this space), an initial solution a is constructed and the neighborhood of
this solution, 7{ax), is searched for a solution ey with smaller objective function value than @,. Then the
neighborhood of this solution, 7(a), is then searched for a solution @, with smaller objective function value
than @;. This process is repeated until a local minimum solution a; (for some &k = 1,2,...) is reached. Sincec it
is oftcn impossible to search an cntire solution space for a desirable solution. the neighborhood function is
uscd to focus the scarch for improving solutions on (typically) small subsets (neighborhoods) of the solution
space. In general, the size of a neighborhood is equal to the order of magnitude of the number of solutions in
that neighborhood. For example, consider a discrete optimization problem where the solution space is the set
of binary vectors {0,1}". Then the k-flip neighborhood function of a solution @ = (@, @»,..., ®,) € {0,1}"
consists of all binary vectors = (£3,42,...,4,) € {0,1}" that can be obtained from switching k components of
@ (i.c., Zi12. . n @ - & | = k). This k-flip neighborhood function has size O(n").

The challenge when using local search algorithms is that when a local optimum is reached, it is often not a
global optimum. Therefore, the effectiveness of local search algorithms is highly influenced by the choice of
the ncighborhood function. More specifically, understanding the likelihood that a given neighborhood
function has zcro (or few) local optima that are not global optima may impact how a local search algorithm is
implemented or uscd. For a ncighborhood function with zero (or few) local optima, an uppcr bound on the
time to find an improving solution to any given solution, except global optima, is a product of the time it takes
to compute the objective function and the number of solutions in the neighborhood (which are both known).
One can then assess whether it is reasonable to run a local search algorithm for additional iterations after a
certain quality solution is obtained. This is an advantage for neighborhood functions with no local optima
that are not global optima, as compared to neighborhood functions with many such local optima, since for the
latter neighborhood functions, it could take a prohibitive (exponential) amount of time to find an improving
solution. If the likelihood of having no local optima that are not global optima is known for many different
neighborhood functions, then one can determine (after obtaining a certain quality solution) if a larger
neighborhood with its longer search time is preferable to reach a particular objective function value (see
Jacobson et al. 2005 for a description of one such measure). Therefore, knowing the likelihood that different
neighborhood functions have no local optima that are not global optima could be useful in designing a local
search algorithm in which the neighborhood function changes as the algorithm progresses. Furthermore, if a
neighborhood function has a high likelihood of having zero (or few) local optima that are not global optima,
then any local optimum would then have a high likelihood of being a global optimum. This suggests that
knowing the likelihood of having no (or few) local optima that are not global optima is helpful in determining
the quality of local optima found by a local search algorithm.

Large neighborhood functions are likely to lead to few local optima that are not global optima. Therefore,
a local search algorithm using such a neighborhood function is likely to find an improving solution in the
neighborhood of a randomly selected solution. However, it generally takes more computing time to search
large neighborhoods for an improving solution (Ahuja et al. 2002). This suggests two opposing situations:
using large neighborhood functions that are computationally intensive to search but rcsult in few local optima
that are not global optima, versus using small neighborhood functions that are computationally efficient to
search but result in a large number of local optima that are not global optima. The ideal situation is to create
neighborhood functions that are both computationally efficient to search and are sufficiently large such that
they result in zero (or few) local optima that are not global optima. However, this is highly unlikely to occur
for all instance of a hard discrete optimization problem, assuming P # NP. To provide results based on this
observation, this research examines how increasing the neighborhood size affccts the likelihood that the
resulting ncighborhood function has no local optima that are not global optima, for generic solution spaces.
Such results represent a first step towards providing insights and information on deciding if the reduced
number of local optima (that are not global optima) that comcs with larger neighborhoods is worth the
associated increased search times.

Researchers have begun to examine the question of how to choose an effective neighborhood function. For
example, the autocorrelation coefficient of a neighborhood function (Angel and Zissimopoulos 2000)
measures the closeness of objective function values of neighboring solutions, by quantifying the continuity of
a neighborhood function on a discrete solution space. A high value for the autocorrelation coefficient
suggests that the objcctive function values of neighboring solutions are close, which suggests that the number

ot
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of local optima may be small. The autocorrelation coefficient can be used to compare two different
neighborhood functions for a given problem. Other recent work with neighborhood functions includes results
on large-scale (exponentially sized) neighborhood functions (Ahuja et al. 2002), where the size of the
neighborhood is defined to be very large with respect to the input data size. However, to make these
neighborhood functions practical, algorithms are needed so that they can be searched efficiently. The general
consensus is that larger neighborhood functions are attractive since they tend to result in fewer local optima.

There have also been several results reported in the literature on complexity issues associated with
neighborhood functions. Johnson et al. (1988) introduce the class of problems PLS and investigate the
complexity of finding local optima for neighborhood functions of discrete optimization problems. The class
of problems PLS contains all local search problems (discrete optimization problems together with a
neighborhood function) in which local optimality can be verified in polynomial time. Jacobson and Solow
(1993) and Armstrong and Jacobson (2003) investigate the complexity of finding polynomial time
improvement algorithms for discrete optimization problems. A polynomial time improvement algorithm is a
polynomial-time algorithm such that given any solution, either another solution can be found with better
objective function value or clse the algorithm concludes that no such solution exists and the given solution is
a global optimum. A polynomial time improvement algorithm exists when a polynomially computable
neighborhood function with zero L-locals is available.

Armstrong and Jacobson (2006b) investigate thc complexity of finding neighborhood functions with
specified desirable properties (such as zero L-locals or polynomial number of L-locals) for NP-hard discrete
optimization problems. Armstrong and Jacobson (2006b) introduce the neighborhood transformation and
show that MAX Clause Weighted Satisfiability (MCWS), Zero-One Integer Programming (ZO1P), and other
NP-hard problems are NPO-complete with respect to neighborhood transformations. Therc are several
implications of these results. 1n particular, if MCWS or ZOIP has a polynomially computable ncighborhood
function with zero L-locals, then so does every other problem in NPO. Also, if MCWS or ZOIP has a
polynomially computable neighborhood function with a polynomial number of L-locals, then so does every
other problem in NPO. Armstrong and Jacobson (2006a) show that other related properties are preserved by
neighborhood transformations, such as ncighborhood functions with paths to local optima (global optima) of
polynomial length.

Several papers in the literature examinc the number of L-locals for reasonable neighborhood functions
(Tovey 1985) of NP-hard discrcte optimization problems. A reasonable neighborhood function is independent
of the problem data and has size that is polynomial in the input data size. Vizing (1977) and Savage et al.
(1976) independently show that any problem parameter independent neighborhood function of TSP for which
all local optima are global optima must be exponentially large, hence there does not exist a reasonable
neighborhood function for TSP with zero L-locals. Tovey (1985) shows that every reasonablc neighborhood
function for Maximum Clique and MAX SAT does not have the smooth property (every strict L-local is a
global optimum). Armstrong and Jacobson (2005) strengthen this result by showing that a// data independent
neighborhood functions for MAX 3-SAT do not have the smooth property, except for neighborhood functions
that contain all possible solutions for instances with » > 4 Boolean variables. Rodl and Tovcy (1987) also
demonstrate that for Maximum Independent Set, there exists a graph (up to the relabeling of the vertices) such
that all neighborhood functions of polynomial size have exponentially many local optima.

The purpose of this research is to gain new insight into the number of local optima when using particular
neighborhood functions over a generic solution space, (i.c., a set of discrete objects and a sct of valucs
associated with each object. By design. any discrete optimization can be modeled as a generic solution space;
see Fleischer and Jacobson 1999.) In general, a neighborhood function that leads to a small number of local
optima that are not global optima is desirable when applying local search algorithms. Moreover, a good
neighborhood function should also have a small diameter (i.e., the smallest positive integer d such that there
exists a path between every pair of solutions with d or fewer neighborhood connections) and a high
correlation among neighbors (i.e., solutions with objective function values close together will be neighbors of
each other). This research examines the relationship between the sizc of neighborhood functions and the
number of local optima. The objective of this research is to provide insights into how to select neighborhood
functions, and hence, facilitate the development of new local search algorithms in which the neighborhood
function changes as the algorithm progresses. The ultimate (long-term) goal of this research is to develop
rules or guidelines when choosing a neighborhood function for discrete optimization problems.

The results reported provide an important first step in examining the number of neighborhood functions
with zero L-locals. These results report include the number of neighborhood functions with zero L-locals
over a generic solution space that consists of an objective function that is onc-to-one (each solution has a
unique objective function valuc in an instance). The hope is that these results will eventually be extended to
NP-hard discrete optimization problems, which will begin the process of developing information on solution
landscapes (i.e., the number of local optima, relationship among local optima. reachability of local optima) of
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commonly used ncighborhood functions; such information could be helpful when selecting ncighborhood

functions for such problems.

Several dcfinitions are nceded to discuss the results obtaincd and reported. A discrete optimization
problem (82, f) is formulated to find a solution @ € (2 that optimizcs £, where €2 is the (finite) solution space
and f: £2- 91 is the objective function (Garey and Johnson 1979). Without loss of generality, assumc that
discretc optimization problems are minimization problcms. Given a discrete optimization problem (£2 /), a
neighborhood function 1. £2— 2“ maps each clement of £2to a set of clements in 2such that o & n(w) for
all w € £2. Note that this definition states that therc docs not exist a solution that is in its own ncighborhood
(this restriction 1s needed so that a definition for strict local minimum (given below) is well-dcfined.) Local
search algorithms use a neighborhood function to traversc the solution spacc (Jacobson et al. 1998).
Thercfore, a search formulation is defined to be thc three-tuple (€2 £ 7). A neighborhood function 7 is
symmetric if @, € n(w,) implies @, € nf(e,;) for all @, e» € €2 Assumc that the neighborhood functions
considered in this research arc symmetric. Neighborhood functions 77; and 77, are equivalent if for all w € Q,
m(@) = nfw), while neighborhood functions 7, and 7, are distinct (or different) if there cxists @ € €2 such
that 77,(@) = M ).

For a discrete optimization problem (£2 f), define a global minimum (maximum) to be a solution @ € 2
such that flw) < (2) flw) for all @” € £2. Given a search formulation ({2 £, 1), a solution @ € $21is a local
minimum (maximum) if lw) < (2) A for all " € m(w). Also, for a search formulation (£2 f, 7), a solution @
e Qis a strict local minimum (maximum) if fw) < (>) Ae’) for all @ € n(w). A solution w € £2is a (strict)
L-local if w is a (strict) local optimum that is not a global optimum.

Nceighborhood functions for discrete optimization problems can be described in several ways. Symmetric
neighborhood functions can be modeled using an undirected graph G = (V, E)) (for undirectcd graphs, edge (u.
v) is equivalent to the edge (v, #)). Given a neighborhood function 7 for a discrcte optimization problem (£2
/. the neighborhood graph (Angel and Zissimopoulos 2000) of 1 has vertcx set V' = £2and edge set £ where
(o’ w) € E ifand only if "€ m{w). Two graphs G,=(V,, E;) and G,= (V,, E,) are isomorphic if there exists
a bijcetion (i.c., onc-to-one and onto function) ¢ V; — V, such that (v, v) € E; if and only if (¢u), ¢v)) € E;
(see Chartrand and Oellermann 1993). A neighborhood function is r-regular for some positive intcger r if the
corresponding neighborhood graph is r-regular (Chartrand and Oellcrmann 1993) (i.e., |{®)| = r for all ® e
£2). For cxample, if 2= {®,w,,....®,}, then a neighborhood function 77 defined by (@) = { @, .}, n(n) =
tan, o), and M@) = {@.). @) for i = 2,...n-1 is 2-regular. Similarly, a ncighborhood function is
connected if the corresponding neighborhood graph is connected (Chartrand and Oellcrmann 1993) (i.e., for
every pair of vertices «, v € (2, therc exists a path bctween u and v). A tree of size n is a connected graph
having » vertices and n-1 edges (Chartrand and Oellermann 1993). A tree neighborhood function is a
neighborhood function such that thc corresponding neighborhood graph is a trec.

Note that equivalent neighborhood functions do not represent the same concept as isomorphic graphs. In
particular, there can bc many different neighborhood functions whose ncighborhood graphs are isomorphic.
On the other hand, if the neighborhood graphs of two neighborhood functions are not isomorphic, then the
neighborhood functions must be distinct. This notion is explicitly stated in Lemma 1.1.

Lemma 1.1 (Armstrong and Jacobson 2008): 1f two ncighborhood functions defined on (£2, f) are equivalent,
then their ncighborhood graphs are isomorphic. On thc other hand, there exist distinct neighborhood

functions whose ncighborhood graphs are isomorphic.
n

5 where |£2 = n, can also be uscd to represent a neighborhood function. To sec

A binary vector of size
this, supposc 2= { @, @, ....®,} such that o)) < flw:) <... < flw,). Then therc are at most g = .;\1 possiblc

edges in any graph on £2. A vector x = (x},X2,...,x,) € {0,1}? can represcnt a ncighborhood graph where cach
component of x corresponds to a different possible edge of the graph. Therefore, if x; = 1 (0), then cdge i is
(not) in the graph. Let x; correspond to thc edge (@), @), x; correspond to the edge (@, s), x; correspond to
the edge (w;, w;), x4 correspond to the edge (w;, @,), and so on, with x, corresponding to the edge (@,.;, @,).
The vector x defined in this way is called the binary vector representation of n. If the objcctive function is a
one-to-onc mapping, then the binary vector reprcsentation of any neighborhood function is unique.
Therefore, assuming that the objcctive function is a one-to-one mapping, then two neighborhood functions 7;
and 7, with binary vector representations x and y, respectively, are cquivalent if and only if x —y = 0 (the zero
vector in Y. Binary vector represcntations of neighborhood functions are used to obtain the upcoming

results.
Results are now discussed that arc used to formulatc expressions for the number of diffcrent ncighborhood

functions with ¢ € Z cdges and zero L-locals over a generic solution space, denoted by (£2 f). To simplify
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the analysis, assume that all objective functions are one-to-one mappings. Lemmas 1.2 and 1.3 are needced to
obtain the main results. Lemma 1.2 shows that removing the global optimum from £2 does not affect the local
optimality of the remaining solutions. Lemma 1.3 states that if the search formulation (£2 f 7) has zero L-
locals, then the neighborhood function n must be connected.

Lemma 1.2 (Armstrong and Jacobson 2008): Let (£2 f, 7) be a search formulation with €3 = n. Dcfine
" €£2 to be the global maximum of (£2 f). Then, the solution w € L2 - {@"} is a L-local for (£2 f, #) if and
only if @is a L-local for (2~ {&"}, f, 1).

Lemma 1.2 implies that ({2 f n) and (£2- {®'}, f, 17) have the same number of local minima, unless @ is
an isolated solution (i.e., it has no neighbors, hence its degree is zero). The global maximum " is a local
minimum for a neighborhood function 7 if and only if it is an isolated solution in the neighborhood graph.
Therefore, if the degree of " is not zero, then (£2 £, n) and (22— {®"}, f, 1) have the same number of local
minima.

Lemma 1.3 (Armstrong and Jacobson 2008): Let (£2 £ n) be a search formulation with €4 > 2. 1f (£2 f, 7)
has zero L-locals, then (£2 f, 1) is connected.

From Lemmas 1.2 and 1.3, a general result can be obtained on the structurc of neighborhood functions with
zero L-locals. Lect 7 be a neighborhood function with zero L-locals on (£2, ). where [£2 = n. Also, let G = (V,
E) be the neighborhood graph of 7. Define {®;} in £2to be thc unique sequencc of solutions that satisfy )
>flan) > ... > flw,). Morcover, define a sequence of graphs using the following recursive relationship: let G,
= G and fori = 1,2,...,n, Gi=; = (Vi=;, Eiz)), where Vi, = V; —{w;}, and E;.; = E; — {{(u,v): u = »}. Then,
Lemmas 1.2 and 1.3 show that G; is connected for each i =1,2,....n.

Expressions are now presented for the number of neighborhood functions with zero L-locals and thc
number of tree neighborhood functions with zero L-locals over a generic solution space. Lemma 1.4 gives an

expression for the number of diffcrent neighborhood functions that can be defined on this solution space such
that the search formulation has zero L-locals.

Lemma 1.4 (Armstrong and Jacobson 2008): Let ({2 f) be a generic solution spacc with (2 =»n > 2. Then,
the number of distinct neighborhood functions that have zero L-locals is [1;-12. .1 (2 = 1).

To illustrates these results, let £2 = {w, en, w;} and lw) = i for i = 1,2.3. From Lemma 1.4, the total
number of neighborhood functions on (£2, f) with zcro L-locals is [1-,2 (2 — 1)= 1-3 = 3. These three
neighborhood functions with zero L-locals are given below, where each circle corresponds to a solution and
the objective function value is given as the label associated with each circle.

Graph | Graph 2 Graph 3

From Lemmas 1.2 and 1.3, all neighborhood functions with zero L-locals for the minimization problem (2’ =
{, n, 03,04} and f{w) =i fori = 1,2,3.4 can be obtained by adding one or more edges to any of the thrce
neighborhood functions given above. Thus, there are (2°-1)3 = 21 neighborhood functions with zero L-locals
for €27 and f".

Lemma 1.5 derives an cxpression for the total numbcr of ncighborhood functions defined on a generic
solution space of size n, for any n = 2.

Lemma 1.5 (Armstrong and Jacobson 2008): Let ({2 f) be a generic solution space with |2 = n. Then the

n

total number of neighborhood functions on (£2f) is [1-15. . 2'= A

From Lemmas 1.4 and 1.5, thc proportion of neighborhood functions over » solutions with zero L-locals is
P=Ilri2..0 @-1)  Tle12, 0 2 =Tlim12, pa (1-27),

where the limit of p (as n — ) exists (Marsden 1987) and can be approximated (numerically) to be 0.28.

Theorem 1.1 provides a closed form expression for the number of ncighborhood functions with ¢ € Z~
edges and zero L-locals on a gencric solution space of size n. Theorcm 1.1 is also a consequence of Lemmas
1.2and 1.3. For 2= {1.2,....,n} and objective function i) =i for i = 1,2,...,n, define thc function &,: Z7 —
Z" such that &,(g) is the number of distinct neighborhood functions 7 where (£2 £ 1) is connected with g
edges and zero L-locals. Note that for any one-to-one mapping g: £2 — ¥, the number of neighborhood
functions on (£2, g) with ¢ edges and zero L-locals is also &,(g).
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Theorem 1.1 (Armstrong and Jacobson 2008): Let (£2 f) be a generie solution space with |[£2 = n. Then, for
all nz3 and all n - 1 < q < ("

= PR

‘n-1 " =l
, ]gn_,(q—z) . +Lq Jg,,,(n—z). Furthermore. &(g) = 0 for all

S.(g)=m-Dg, (g-1) +
-n+2
0

()
San-2andallq2:; ezl

Corollary 1.1 presents an expression for the number of trce neighborhood functions with zero L-loeals.
Note that by Lemma 1.3, since scarch formulations must be conneeted to have zero L-locals, then the
ncighborhood graph for each seareh formulation (with zero L-loeals and n-1 edges. where |£2 = 1) must be a
tree. Corollary 1.1 statcs that the number of tree neighborhood functions on £2 (with |2 = n) with zero L-
locals 1s equal to (n-1)!.

Corollary 1.1 (Armstrong and Jacobson 2008): Let ({2, /) be a generic solution space with (€2 = n. Then &,(n-
)= (n-D! forn22.

To illustrate Corollary 1.1, consider the minimization problem 2= {w, @, w;} and w,) =i fori = 1,2.3.
The two neighborhood functions with zero L-locals and two edgcs are represented by Graphs 2 and 3 given
above. Now consider the minimization problem 2= {@;, @y, @5 @} and f{w) =i for i = 1,2,3,4. From
Lemmas 1.2 and 1.3, all neighborhood functions with zero L-locals and thrce edges for this problem can be
obtained by adding one edge to Graphs 2 and 3 (i.e., therc are 3(2) = 6 neighborhood functions over £2”and f*
with zcro L-locals and three edges). These six neighborhood functions are given below.

Graph 1 Graph 2 Graph 3 Graph 4 Graph 5 Graph 6

The following lemma, which is due to Cayley (see Harary and Palmer 1973), states that the number of
eonneeted labeled graphs with #7 vertices and #-1 edges is equal to 7", 1n a labcled graph of n vertices, the
integers 1,2,...,n arc uniquely assigned to each of the vertices (Harary and Palmer 1973). Thercfore, a labeled
graph G, ean be represcnted as a three-tuple G;= (V, E, [), wherc G = (V, E) is a graph of n vertices and /: V —
{1.2,....n} is a one-to-one mapping. Two labeled graphs G, = (V1. E|, I}) and G.= (V3, E;, I5) are the same if
and only if there is a one-to-one map from V; to ¥, that preserves both adjaccncy and labeling (Harary and
Palmer 1973). This means that there is a one-to-one correspondenee between labeled graphs and search
formulations. Lemma 1.6 states Cayley’s result in terms of neighborhood funetions.

Lemma 1.6 (Cayley): Let (£2, /) be a generie solution space with |3 = n. The number of eonneceted
ncighborhood functions defined on £2 with n-1 edges is n"

From Corollary 1.1 and Lemma 1.6, the proportion of tree neighborhood funetions with zero L-locals out
of all eonnected neighborhood funetions with » vertices and n-1 edges is p = (n—1)! / n"*. Corollary 1.2
contains an expression for &(#n) using Theorem 1.1.

Corollary 1.2 (Armstrong and Jacobson 2008): Let (£2, /) be a generic solution spaee with [£2 = n. Then &,(n)
=(n—1 )Y n-2)n-1)!/4 forn > 3.
Lemma 1.7 lists similar results that are obtained without using Lemmas 1.2 and [.3.

Lemma 1.7 (Armstrong and Jaeobson 2008): Let (£2 f) be a generic solution space with |£3 = n. Then

i

_1]=
n n(n-1)/2 n
i) forallnz3, ¢, -2 |= = S

)  foralln22, & '2’ ]:1,

=

i) forallnz3,é,

o

2 2
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Results are presented for two classes of regular neighborhood functions. Many popular neighborhood
functions are regular neighborhood functions, since neighborhood functions that are efficient and easy to
implement are oftcn regular. Examples of regular neighborhood functions used in practice are the k-flip
neighborhood functions of Boolcan optimization problems and the k-opt neighborhood functions of the
traveling salesman problem.

Theorem 1.2 (Armstrong and Jacobson 2008): Lct (£2, /) be a generic solution space with |3 = n. Supposc
|€2 = n > 3. Then the number of 2-regular neighborhood functions 1} where (£2, £, 77) has zero L-locals is phe.

To illustratc Theorem 1.2, considcr the minimization problem 2 = {®;, @, w;,4} and fw) = i for i =
1,2,3,4. All 2-regular neighborhood functions over €2 and f with zero L-locals must have w; € n(w;). The
solution w3 can be in the neighborhood of @» or w,. If @ € p(ar), then w, € n(w;) and w; € n(ws);

otherwise, if w; € n(w;), then @, € n(@,) and w; € n(w;). The 2-regular neighborhood functions with zero L-
locals are given below.

Graph | Graph 2
The number of 2-regular connccted neighborhood functions on a solution space of size n is equal to the
number of Hamiltonian cyc\les in a complete graph of size n. A complete graph on n vertices K, = (V, E)
satisfies |V] = n and |E] = 2) (i.e., for all pairs of vertices u, v € V, (u,v) € E). For a graph G = (V. E) with n

vertices, a walk of length k (k 2 0), vo,v1,...,V, is a scquence of vertices on ¥ such that (v;, vi+)) € £ forall i =
0.1,...k-1 (see Chartrand and Oclicrmann 1993). A Hawmiltonian cycle of a graph G = (V.E) with [V} = n
vertices is defined as a walk of length », vy,v,...,v,, where vo=v, and for each vertex v € ¥ there exists 0 <i <
n such that v = v; (see Chartrand and Oellermann 1993). Given a discrete optimization problem (£2, f) with [£2
= n, a Hamiltonian cyclc vo,v,....v, of a complete graph on £2dcfines a neighborhood function 77 on (£2, f) as
follows: m(vo) = {vi, v}, Mv,) = {vo, v}, and n(v)) = {viig, Vi) fori=1.2,...,n-1.

To count the number of Hamiltonian cycles in a complete graph K,,, note that since each vertex of V is part
of every Hamiltonian cycle, then without loss of generality, fix some vertcx v’ € V and represent every
Hamiltonian cycle by v',v,,....v,.,v". Therefore, the number of Hamiltonian cycles in K, is equal to the
number of permutations of the vertices in V — {v'} divided by two, since every Hamiltonian cycle v',vi,...,V,.
1,V is equivalent to v',v,..,....v;,v". Therefore, there are (n-1)!/2 Hamiltonian cycles in the complete graph K.

Lemma 1.8 (Armstrong and Jacobson 2008): Let (£2, /) be a generic solution space with [£3 = n. Then the
number of 2-regular connected neighborhood functions on (£2) is (n-1)!/2.
From Theorem 1.2 and Lemma 1.8, the proportion of 2-regular neighborhood functions having zero L-
locals is
p=2"%/[(n-112),

which converges to zero (as 7 goes to infinity). Intuitivcly, the proportion of ncighborhood functions having
zero L-loeals will converge to zero when restricted to r-regular ncighborhood functions, wherc r is a constant.
If r 1s allowed to increasc as » increases, then the proportion of neighborhood functions having zero L-locals
may converge to a number greater than zcro.

Consider the graph that has an even number of verticcs 7 and is n/2-regular. Property 4 defines a
restricted subclass of neighborhood functions.

Property A: Let 7 be a neighborhood function on a generic solution space (£2, /). The following property
holds for #: for all w e 2 if W, @ € M), then w; & N w,).

Lemma 1.9 (Armstrong and Jacobson 2008): Let (£2, f) be a generic solution space with (€2 = n. Suppose
that n is cven and » = n/2. Then

(a) the total numbcer of r-regular ncighborhood functions that satisfy property 4 is (""\,
r

(b) there arc (7-2) r-regular neighborhood functions that satisfy property 4 with zero L-locals.
Lr-1

By only considering n/2-regular neighborhood functions that satisfy property A, the proportion of such
neighborhood functions 77 where the search formulation (£2f,77) has zcro L-locals is
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r~1 r 2

- = e , where [£2 = nand r = n/2.
[ n=1} n-1 n-1
\
Therefore, the proportion of 1#/2-regular neighborhood functions 7 satisfying property 4 with zero L-locals is
slightly greater than 0.5.

To illustrate the lemmas and theorems given above, a computer program was developed to count the
number of neighborhood functions with ¢ € Z~ edges and zero L-locals. Given the number of vertiees 7, the
computer program generates the adjacency matrix of every possible graph on » vci'liecs and then counts the

number of neighborhood functions with zero L-locals and g edges, for n-1 < g < | '27 . The computer program

also counts the number of conneeted neighborhood functions with g edges, for n-1 < g < | Z 1 Table 1 reports

the results for » = 3,4,5,6. The first column contains the number of solutions in the solution space. The
second column contains the number of edges in the neighborhood graph. The third column contains the
number of neighborhood funetions with the corresponding number of edges and solutions. The fourth ecolumn
contains the number of connected neighborhood functions for the given number of edges and solutions.
Similarly, the fifth column contains the number of neighborhood funections with zero L-locals and the
corresponding number of edges and solutions. For example, from the first row; there are three neighborhood
funetions on three solutions with two edges, three conneeted neighborhood functions on three solutions with
two edges, and two neighborhood funetions on three solutions with two edges and zero L-locals.

The values reported in Table 1.1 illustrate the results reported above. Note that these values are consistent
with Corollary 1.1, in that &(2) = 21 = 2, &(3) = 31 = 6, &(4) = 4! = 24, and &(5) = 5! = 120. Moreover,
from Corollary 1.2, &(3) =212/4=1, £&(4)=326/4=9, &(5) =4324/4 =72, and &(6) = 54'120/4 = 600.
Applying the result of Theorem 1.1 for n =4 and g = 5, it follows that £(5) = 3&3(4) + 3&5(3) + &(2) =0+ 3
Fo2n A

Table 1.1
Solution Space Structures
Number Number Number of Number of Number of
of of Neighborhood Connected Neighborhood
Solutions Edges Functions Neighborhood Funetions with
Functions Zero L-locals
n=3 2 3 3 2
3 1 | 1
n=4 3 20 16 6
4 15 15 9
5 6 6 5
6 1 1 1
n=5 4 210 125 24
S 252 222 72
6 210 205 98
7 120 120 76
8 45 45 35
9 10 10 9
10 1 1 1
n= S 3003 1296 120
6 5005 3660 600
i 6435 5700 1450
8 6435 6165 2200
9 5005 4945 2299
10 3003 2997 L1717
11 1365 1365 923
12 455 455 351
13 105 105 90
14 1iS 15 14
15 1 1 1
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In conclusion, the results reported provide a first step in examining the number of neighborhood functions
with zero L-locals over a gencric solution spacc. Expressions are derived for neighborhood functions that
belong to certain classes, c.g., 2-regular and tree neighborhood functions. A closed form cxpression is
derived for the number of neighborhood functions with zero L-locals that have exactly g edges, for positive
integer ¢ (Theorem 1.1). Unfortunately, this cxpression may takc exponentially many operations (in the sizc
of the solution space) to compute. This cxpression can be used, as shown in Corollaries 1.1 and 1.2, to obtain
direct formulae in particular cases. The hope is that results of this typc can be obtained for particular discrete
optimization problems. It is highly unlikely that the methods used here to dctermine, for example, the number
of neighborhood functions that results in zero L-Locals, can be applied for a particular discrete optimization
problem. However, results of this type would be useful in establishing the limitations of local search
algorithms in solving such discrete optimization problems. Given that such results would need to exploit the
particular characteristics of each problem under study, problem specific techniques would need to be used,
rather than the more general approach taken here over a generic solution space, though these methods may
provide the necessary motivation for such research.

There are several possible extensions of this research. It would be of great value to use the results of the
type provided here to develop guidelines for local search algorithms that change neighborhood functions as
the algorithm executes and to develop information that can be used to select the set of a neighborhood
functions to consider. Recent results with hyper-heuristic suggest that such heuristics would be particularly
benefited by such insights (Burke et al. 2003). It would also be desirable to find closed form expressions or
rccursions for the number of practical ncighborhood functions having zero L-locals, or any specific number of
L-locals. If such expressions or rccursions are obtained, then the expected number of L-locals can be
computcd for many classes of neighborhood functions. Such results may help practitioners develop local
scarch algorithms in which the ncighborhood function changes as the algorithm progress, an area of current
rcsearch and investigation. Moreover, if eomputationally feasible expressions cannot be found, then tight
uppcr and/or lower bounds would also be of value.

2. Using Markov Chains to Analyze the Effectiveness of Local Search Algorithms

Discrete optimization problems are dcfined by a large, finite set of solutions and an objective function that
assigns a value to each solution. The goal when addressing a discrete optimization problem is to find solutions
that globally optimize thc objective function value. For NP-hard discrcte optimization problems, it is unlikely
that polynomial time algorithms exist to solve them (unless P = NP) (Garey and Johnson 1979). Moreover,
complete enumeration of the entire sct of solutions for large discrete optimization problem instances is
typically not possible with cxisting computing tcchnology. Therefore, much effort has been directed towards
developing efficient heuristic algorithms to find near-optimal solutions in a reasonable amount of computing
time.

For NP-hard discrete optimization problems, numerous heuristics exist for effciently finding near-optimal
solutions. Local search algorithms such as simulated annealing (Kirkpatrick et al. 1983), tabu search (Glover
and Laguna 1997) and threshold acccpting (Dueck and Scheuer 1990) offer general approaches to finding
reasonable solutions to a wide variety of NP-hard discrete optimization problems. The objective of these
algorithms is to find the best possiblc solution using a limited amount of computing resources (see Aarts and
Lentra 1997 for an in-depth discussion of local scarch algorithms). A further challenge is to construct
algorithms that find near-optimal solutions for all instances of a particular problem, sincc the effectivencss of
many algorithms tends to be problem-specific, as they exploit particular characteristics of problem instances
(e.g., Lin and Kernighan 1973 for the traveling salesman problem). 1t is thereforc useful to assess the
performance of algorithms and devise strategies to improve their effcctivencss in solving NP-hard discrete
optimization problems.

The current literature on asymptotic convergence propertics and finite-time pcrformance measures
focuses primarily on convergence to a globally optimal solution. However, in practice, solutions with
objective function values that are close to the objective function value of a globally optimal solution are often
acccptable. Without loss of generality, unless otherwisc noted, assume that all discrete optimization problems
are minimization problems. Orosz and Jacobson (2002) dcfine solutions that have objcctive function value no
greatcr than some threshold valuc as B-acceptable solutions, where B denotes the maximum acceptable
objective function value (neccssarily greater than or equal to the objective function value of a globally
optimal solution for a minimization problem). Jacobson et al. (2010) analyze the finite-time behavior of local
search algorithms in visiting 3-acceptable solutions. They address the question: For a given GHC algorithm,
what is a reasonable amount of time to search for suboptimal solutions? However, their results arc limited to
algorithms wherc independcnce is indueed between sets of algorithm iterations, with the number of iterations
in a set typically fixed at somec small value. This limits the scope of local search algorithms that can be
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analyzed within this framework, since many local search algorithms are designed to exploit best-to-date
solution information at each itcration when searching for improved solutions.

Nikolaev and Jacobson (2009) extend the results reported by Jacobson et al. (2010) to algorithms that usc
the best-to-datc solution at each iteration (i.c., determine conditions under which convergencc to B-acceptable
solution occurs, and to obtain a methodology to estimatc thc expccted number of iterations to visit a f-
acccptable solution). The computational results reported focus on the analysis of the Lin-Kernighan-Helsgaun
algorithm (Helsgaun 2000), which uscs a variable, A - Opr ncighborhood search and is considered one of the
most cffective heuristics for solving large traveling salesman problem (TSP) instanccs. Nikolacv and
Jacobson (2009) provide an overvicw of B-acceptable solutions, prescnt a Markov chain analysis framework
for local scarch algorithms that use information on the best-to-date solution, presents a method for computing
the expected number of itcrations for a local search algorithm to visit a B-acceptable solution, and introduces
Markov chain pooling transformations. They also show how Markov chain pooling can be used for local
search algorithm analysis and illustrate thc thcoretical results rcported with extensive computational results
for the Lin-Kemighan-Helsgaun algorithm applicd to scveral TSP instances taken from TSPLIB (with known
globally optimal values).

Local scarch algorithms scck to find good solutions for NP-hard discrcte optimization problems by
visiting inferior solutions enroutc to optimal/near-optimal solutions. For a discrete optimization problem, the
solution spaece 2 is a finite set of feasiblc solutions. An objective function f: Q — [0,+o0) assigns a real value
to cach clement of Q. A neighborhood function n: Q — 2% where n(w) < Q for all ® € Q, providcs
connections between the elements in @) < Q, and hencc, allows the solution space to be traversed or scarched
by moving between solutions.

The solution space for a discrete optimization problem can be partitioned into two mutually exclusive and
exhaustive sets:

- the set of globally optimal solutions, G = {®* € Q: f(o*) < f(®) for all ® € Q},

- the set of all othcer solutions, G° = {® € Q: flo*) < flw) forall ®* € Q} = O\G.

Finding a globally optimal solution for an NP-hard discrete optimization problem is often computational
intensive (and may not even be possiblc in a reasonable amount of computing time.) Therefore, solutions that
are within a predetermined threshold arc often acceptable in practice. To describe such solutions, define the
set of B-acceptable solutions, Dg = {® € Q: f{w) < B}, where B 2 flo*),0*e G. Note that if B < flo*), o* €
G, then Dg = &. Morcover, limg, go» Dg = G.

Each local scarch algorithm run gencrates a scquence (random samplc) of solutions. In practicc, the best
solution visited over the entire sct of algorithm runs, not just the final solution, is reported. This allows the
algorithm to aggressively traverse the solution space, visiting inferior solutions ¢n route to a f-acceptable
solution, while retaining the best-to-date solution visited. Without loss of generality, assume that all algorithm
runs arc initialized (stochastically) at a solution not in Dy.

Consider a local scarch algorithm run applied to an instance of an NP-hard discrcte optimization problem.
At iteration t=1.2,..., the algorithm generatcs a solution, the random variable ®'. Dcfine the best solution
found over the first t iterations,

Whes() = {we{®', 0, .... "), flw) < flo)) forall j=1,2....t,
and thc objcctive function value of the best solution found over the first t iterations v, = f{@peq(t)). Using
thesc random variables, definc the events

D(t, B) = {(0', ©°, ..., ®'): v, < B} = {At least one element of Dyis visitcd over the first t itcrations} .

D) = {(w', »". ...): v;< B for some j = 1,2,...} = {At least one element of Dy s visited.

Without loss of generality, assume that P(D(t, B)) > 0 for all t = 1,2,... (i.e., finitc-timc convergence to a B-
acccptable solution cannot be guaranteed with probability one). The definition of D(t, B) implies that D(t-1,3)
o Df(t,B). Therefore, D(t,8) is a telescoping, nonincreasing sequence of events in t, and hence. by the
Monotonc Convergence Theorem (Billingsley 1979), P(D(t,8) — P(D(B) as t — +oo, where D(B) = N2 -
= D(t,B). ;

Toﬁcstablish the relationship between the asymptotic convergence of a local scarch algorithm and the
cvent D(B), the following definition is needed.

Definition 2.1: A local search algorithm converges in probability to Dg if P(C(1,f)) — 1 as t— +o where
Ct.p) ={d €82 f(dd) <P} ={An element of Dgis visited at iteration t}.

Given an initial solution o’ €€, if a local search algorithm eonverges in probability to Dy (as 1— +),
then P(D(B))=1. Equivalently, if P(D(B)) < 1, then the algorithm does not converge in probability to Dy (i.e.,
for all € > 0, there exists some iteration to(¢) such that P(C(t,B)) < 1 - € for all t 2 ty(¢).

Thce B-acceptable solution problem asks whcether a local search algorithm will cventually visit an element
of Dy, given that the algorithm, after executing a finitc number of itcrations. has yet to visit an clement of Dy.
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The random variable 13 = min{t < 1: v, < B} measures the number of iterations needed for a local search
algorithm to visit an element of Dj for the first time, and hencc, provides a measure for its effecttveness.

A Markov chain framework is now described that will be used to obtain performance measures for local
search algorithms. Consider a local scarch algorithm guided by information on the best-to-date solution at
each iteration. The conditional probability that thc objective function value of a solution at iteration t+1 is lcss
than or equal to some value
x€(0, +0), given the best solution found through the first t iterations, is denotcd P(f{w ™) < X | @yex(t)); refer
to this probability as the conditional cumulative distribution function (or simply, conditional CDF) of the
objective function value of a solution at iteration t+1.

Consider an ordered set of 1 B-values {B;: 1=0,1,2,...,]1-1} such that flo*)=o < B < B2 < ... <Py1 < +ooc.
Define a set of intervals {A;:i=0,1,2,...,1} such that Ay = [Bo, Bo], Ai = [Bir,Bi), fori=1.2....,1-1,and A, =
[Br1, too]. By definition, thesc 1+1 intervals {A; : t = 0,1,2,...,1} are non-overlapping, with Uiz, 1A =
[flo*),+x). Also, forall1=0,1,2....1, f(w) € Uj,,..i4j, forall ® € Dg.

First, restrict the analysis to a problem instance where each feasible solution has a unique objective
function valuc. Since the set of feasible solutions is finite, then all solutions can be ordered and indexed such
that flo*) < flo)) < flw;) < ... < f((o)), where 1 = |Q}, Bo = flo*) and B; = f(w;) for i=1,2,....1. Then, each
interval A;, 1=0,1.2,....1, contains exactly one feasible solution.

Consider the stochastic process {X.}, t=0,1.2...., the set of interval indices generated by successive
iterations of a local search algorithm. For each iteration =0,1...., let X;=1 if and only if v, € A;, i=0,1,....I.
Theorem 2.1 shows that this stochastic process has the Markov property, and hence, {X.} is a Markov chain.
Theorem 2.1 (Nikolaev and Jacobson 2009): (X} has the Markov property.

The key rclationship needed to obtain Theorcm 2.1 is {v, € Ax. } < {v; = f{wx,). which is only true when
each interval {A;:i=0,1,..,1} contains exactly one feasible solution. To obtain an expression for the expected
number of iterations to visit a B-acceptable solution, for some > flo*), construct a transition matrix H for
{X:}, t=0,1,..., with statcs i=0,1,...,1. Let states {0,1,...,ig} be absorbing states, where ig= {i: Be A}, and H;
=P(Vie1 € A | Vi € A) = P(f(0"") = fl0)) | Opesi(t) = @) fori =i +1,ig +2, ..., 1and j = 0,1,....L.

Lemma 2.1 cstablishes a relationship between thc expected time to visit an elcment of Dg and the matrix
H.

Lemma 2.1 (Nikolaev and Jacobson 2009): E(7g) is the expected time to absorption for the Markov chain {X,}
with transition matrix I1.

Lemma 2.1 shows that the value of E(tg) can be computed using the transition matrix H. However, this
result has no practical value, sincc the dimension of H (namely |QQ]) is very largc for any rcasonable problem
instances. In practice, |2 grows exponcntially with the dimension of the problem, which makes it impractical
to directly analyze the resulting Markov chain. To overcome this difficulty, a Markov chain with fewer states
can be constructed. To this end, consider thc non-overlapping intcrvals {A’, : u = 0,1,..,U}, with U << [Q]
(i.e., several solutions fall into each interval). Therefore, all solutions falling into a single interval can only be
analyzed as a group, which also means that the assumption that each solution has a distinct objective function
value must be relaxed (i.e., several different solutions may have the same objective function value). One
1ssue that immediately arises when treating this more general case is that the stochastic process {X}, t=0,1,...,
is no longer Markovian. This suggests that a ncw Markov chain must be created for computing the expected
time to visit Dg.

Given a Markov chain with a large number of states (termed the original Markov chain, such as described
above, it is possible to construct a ncw Markov chain with fewer states, such that its expccted time to
absorption is equal to the expected time to absorption for the original Markov chain. Theorem 2.2 describes
how such a construction can be achieved for a Markov chain with a lower-triangular transition matrix.
Theorem 2.2 (Nikolaev and Jacobson 2009): Given any N state absorbing Markov chain {Y,} with lower-
triangular transition matrix T, where state one is absorbing, and P(Y,=n) = P, for n=12,...N is the
distribution for the initial state Y;, construct an (N-1) x (N-1) transition matrix T', such that

a)Tiyy=Tjfori=12..,N-2j=12,..,N-I,

b) T'npj = (On.g /(v +on)Tvg; + (O / (n +n)) Ty forj = 1.2.....N-2,

¢) Tyt =1 -Z=12. n2 Ty,
Where . and @y are the expected number of visits 10 states N-1 and N, respectively, prior to absorption in
the Markov chain {Y,}. Then, the expected time to absorption for the N-1 state Markov chain {Y'} with
transition matrix T', where state one is absorbing, and P(Y y=n) = P’, = P, for n=1,2,...,N-2, and P(Y")=N-1)
= P’n.;=Pn.,tPy is the distribution for the initial state Y'o, is equal to the expected time to absorption for the
Markov chain {Y,}.

Theorem 2.2 shows that for any absorbing Markov chain with a lower-triangular transition matrix and a
given initial state distribution. the last two states in the chain can be pooled into a single state to form a new

1+1
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transition matrix, such that the expected time to absorption for the Markov chain defined by this new
transition matrix is equal to the expeeted time to absorption for the original ehain (the initial state distribution
for the new chain is the same as the original chain, with the probabilities for the two pooled states sumimed).
Note that the expeeted number of visits to the pooled state prior to absorption in the new chain, ®’x.;. is equal
to the sum of the expeeted numbers of visits to the two states that are being pooled prior to absorption in the
original chain,

o'Na =P /(T NN = O + oy
Corollary 2.1 follows from Theorem 2.2, by eonsidering more than two states bcing pooled.
Corollary 2.1 (Nikolaev and Jacobson 2009): Given any N state absorbing Markov chain {Y,! with lower-
triangular transition matrix T, where state one is absorbing, and P(Y, = n) = P, for n=1,2,...N is the
distribution for the initial state Y, construct an (N-m+1) x (N-m+1), for some m=2,3,... . N-I, transition
matrix T', such that

a) T, =T, fori=12,. .N-m, j=12,. N-m+],

D) T'vmerj = ZizNmnomsi, N OT i/ eNom N1

L) TVm«-lN m+] — =1- 2 =1.2,...N-m T'A\«m+l]
where @ is the expected number of visits to state i=N-m+1,N-m+2,...,N, prior to absorption for the Markov
chain {Y,}. Then, the expected tiine to absorption for the N-1 state Markov chain {Y', }, with transition matrix
T', where state one is absorbing, and P(Y'y = n) = P', = P, for n=1,2,...N-m-1, and P(Y'y = N-m) = P'\.,, =
Z-NmN-m+1...n Piis the distribution for the initial state Yy, is equal to the expected time to absorption for the
Markov chain {Y,}.

Corollary 2.1 shows that for any absorbing Markov chain with a lower-triangular transition matrix and a
given distribution of the initial state, the last m (that ean take on a value between two and the total number of
states in the chain minus one) states in the chain can be pooled into a single state, resulting in a new transition
matrix. such that the expected time to absorption in a Markov chain defined by this new transition matrix is
equal to the expected time to absorption in the original chain (the initial state distribution for a new chain is
the same as the original, with the probabilities for the pooled states summed). However, it does not provide
results for the ease where the pooled states are not the last states of the ehain. Lemma 2.2 is needed to address
this case.

Lemma 2.2 (Nikolaev and Jacobson 2009): Given any N state absorbing Markov chain {Y,} with lower-
triangular transition matrix T, where state one is absorbing, and P(s(0)=n)=P, for n=12,...N is the
distribution for the initial state s()), construct an (N-1) x (N-1) transition matrix T' by removing the last
C()lumn and the last row in T. Then, y, the expected time to absorption for the Markov chain {Y,}, is equal to

/ (1-Tyy) plus ', the expected time to absorption for the N-1 state Markov chain {Y' } with transition
matrix T' where state one is absorbing, and P(s'(0)=n) = P', = P, + Ty, Py/ (1-Txy) for n=1,2,....N-1, is the
distribution for the initial state s'(0).

Lemma 2.2 gives an expression for the expected time to absorption for Markov ehains with lower-

triangular transition matrices. Theorem 2.3 provides a general result for eomputing the expeeted times to
absorption for such Markov chains, using state pooling. It establishes that any conscecutive states in an
absorbing Markov ehain with a lower-triangular transition matrix can be pooled, sueh that the result in
Corollary 2.1 holds.
Theorem 2.3 (Nikolaev and Jacobson 2009): Given any N+r state absorbing Markov chain {Y,} with lower-
triangular transition matrix T (r€Z"), where state one is absorbing, and P(Y,=n) = P, for n=1.2.... N+r is the
distribution for the initial state Y 0, construct an (N-m+r+1) x (N-m+r+1) transition matrix T', for some
m=2,3,...N-1, such that

a) Ty = T for i=1,2,... N-m, j=1,2....N-m+r+l,

b) T,V_"p-]', 2 =N-mN-m+1I....N (l}:T i‘j/(Z;-' N-mN-m+I...N a)iT'l',[') forj=1'2" ..,1V‘"1+1.

&) Dnmsinmer = 1 = Zimp2. tem Tty

d) T'Nome1; = 0 for j = N-m+2, N-m+3,... .N-m+r-1,

e) T'ij= Tip1.j for i= N-m+2, N-m+3,.. N-m+r-1,j = 1,2,...N-n,

D Tlimer = Spenars i Nmws .- Tiemei g fOr I = Nemi¥2, Nan+3, ..., N-m+r-1,

) Tij= Timyj for i= N-m+2, N-m+3,.. .N-m+r-1, j = N-m+2, N-m+3,... N-m+r-1,
where ; is the expected number of visits to state i= N-mi+I1,N-m+2,..,N, prior to absorption for the Markov
chain {Y,}. Then, the expected time to absorption for the N-m+r+1 state Markov chain {Y'}, with transition
matrix T', where state one is absorbing, and P(Y'y»=n) = P', = P, for n=1,2,.... N-nmt, P(Y's3=N-m+1)=P N1 =
S vmNmer...n Py, and P(Y's=n) = P",=P,...;.}8 for n = N-m+2,N-m+3,.. ,N-m+r+1 is the distribution for the
initial state Y'y, is equal to the expected time to absorption for the Markov chain {Y,/.

To see how Theorem 2.3 ean be used to obtain computational results for local search algorithms, assume
that each execution of a local search algorithm is initialized at a randomly generated initial solution w,, and

v T’y forj=12,. . N-m+1,
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hence, P(flw') < x | @) is the conditional CDF of the objective function value of a solution from iteration
one. For a problem instance where each distinct solution has a unique objective function value, the stochastic
process {X}, t=1,2,..., is a Markov chain with transition matrix H. Using H. the expected time to absorption
in {X,}, E(tp), can be computed. Without loss of generality, let B denote a set of B-values for the objcctive
function, with U=|B|, and sclect U+1 intervals {A';: u = 0,1,...,U} such that Uy, v Ay = Vim0, Ais Ay =
Uii: flo) € an A for all u = 0.1,...,U, and each BeB is the largest value in the interval A’y, where ug = {u: Be
A',} for Be B. By Theorem 2.3, construct a new transition matrix H' from H by pooling each group of states,
for v, € A',, into a singlc state, for u = 0,1,...,U. Without loss of generality, assume that the initial state
distribution for the Markov chain {X,} is given as a probability mass function. Thcorem 2.3 establishes that
the expected time to absorption in the Markov chain with transition matrix H' (the initial state distribution for
this chain is the same as the initial state distribution for {X,}, with the probabilities for the pooled states
summed) is equal to E(tp), the expected time to absorption in {X,}.

Note that in practice. local search algorithms can not be executed for an infinite number of iterations.
However, they are often executed with multiple restarts, with an upper bound T sct on the number of
iterations an algorithm performs during each restart run. Given T. lct E1(tg) denote the expected number of
iterations to visit Dg. Since 15 is a non-ncgative random variable, then

Et(tp) = Zem0n,... P(1p> 1) = 1+Zer2,. P(13> 1)

For an algorithm executed with multiple restarts. thc runs (at most T iterations each) are independent of cach
other. For any run, the probability that Dg is not visited during the first t iterations, F(t), is the same.
Therefore, for any t=1,2....,

P(tp> t) = F(T)"™ FeTLuT)),
and hence,

Er(tp) = 1412, 7P(1p> 1) +Eerrinea. 2 P(1p> ) + +Zeamviomen, 3T P(Tp> 1) + ..

=142 2.7 F@®) +F(T) Zemr 2. 1 F(O) + F(T) Zemr2. 1 F(O) + F(T)’ Zimy2 3 FQO) ..

=1+ (Ew12..7FO)/ (1 - FKT)))
which holds only if F(T) < 1. Otherwise, the probability that Dy is visited during any finite number of
independent algorithm runs (with each at most T iterations) 1s equal to zero, and hence, E((tp) = +o0.

Let states i = 0,1,...,i3 in the Markov chain {X,} with transition matrix H be absorbing states. For any
t=1,2,...,T, F(t) can be computed using the matrix H", the t™ power of H, and the initial state distribution for
the Markov chain {X,},

F() = 1-Zicipn....1 Zjmo1 ... » HY P’ € A).

Using matrix H'", the t* powecr of transition matrix H', and the initial state distribution for the Markov chain
with transition matrix H', for any t=1,2....T, define

F(0) = 1-Zomer....0 Zvein 2, H W P00 € A7)
and

Er=1+((Ze2. tF @)/ (0 -F(T))
In general, F'(t) # F(t) for any t=1.2...., and hence, E'tr # E(1p) for any fixed T=1,2,.... Theorem 2.4
establishes a convergence result that allows the transition matrix H' to be used to estimate the expected
number of iterations that a local scarch algorithm requires to visit D3 when executed with multiple restarts.

Theorem 2.4 (Nikolaev and Jacobson 2009): For all € > 0, there exists T*€ | such that |E'r - Ef{tg)| < € for
all T>T*

Nikolaev and Jacobson (2009) reports thcoretical and computational results for estimating the expected
number of iterations to visit Dy based on the Markov chain with transition matrix H'. To illustrate the
estimation proccdure, the Lin-Kernighan-Helsgaun (LKH) algorithm was applied to eight medium and large
TSP instances taken from TSPLIB (PCB442, PR1002, RL1889, D2103, U2152, PR2392, PCB3038 and
FNL4461, with the number denoting the number of citics; see Reinelt 1991) to obtain estimates for Er(tp) for
cach instance. The Lin-Kernighan algorithm (Lin and Kernighan 1973) uses variable A-Opt neighborhoods,
where at each inner loop iteration, the algorithm considers a growing set of A-Opt moves (starting with A=2);
sce Aarts and Lenstra (1997) for a dctailed description. Helsgaun (2000) extends the work of Lin and
Kernighan to describe the LKH algorithm, a highly effective heuristic for obtaining near-optimal solutions for
large TSP instances. Note that thcse experiments were not designed to present a ncw local search heuristic for
the TSP, but rather, to demonstrate a method to analyze local search algorithms applied to the TSP (or in fact,
any hard discrete optimization problem).

A description of the design of such experiments, including convergence results for the resulting estimators,
1s now given. Consider K independent LKH runs. For any u € Z°, ug < u < U, define S(k.T,A’,) as the sct of
all iterations (among the first T iterations of the k™ run) such that the objective function value of each such
iteration falls into the interval A’,, with e(k.T, A’,) = [S(k,T. A’))|. Forany v € Z, 0 < v < u, define
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B =it kB s ey Ll Bt i ST A'w)
where I; = | if a solution found at iteration s € S(k, T, A’v), k=1,2,... K, belongs to A'v, and 0 otherwise.
Theorem 2.5 establishes a convergence result for Ff -

Theorem 2.5 (Nikolaev and Jacobson 2009): For those values of f such that P(Dp > 0, H "o 2rHuvas T

— towand K— +ooforanyuv € Z withug<u <Uand0<v <u.

Theorem 2.5 establishes that the given estimation procedure guarantees weak convergence of H' 1o H',.

as the number of runs and the number of iterations in each run grow infinitely large. Define the random
variables

F'(’)E i3 ZU“UD“I
and~
Er=14(Cma.x F W)U -FTD)Y

Theorem 2.6 establishes that £ '+ converges in probability to E'ras 7 — +xand K — +c.

v

u Zy 0,.....up l_.{'(” P((DO eA’Y),

..... 78S

Theorem 2.6 (Nikolaev and Jacobson 2009): For those values of  such that P(Dg > 0, E 't 2pEras T —
tooand K— +eo :

Nikolaev and Jacobson (2009) report computational results to illustrate how the estimator for the expected
number of iterations to visit Dgcan be computed for a local search algorithm with multiple restarts. First, the
definitions and a general description of the LKH are given. Using the terminology introduced by Helsgaun
(2000), each iteration of the LKH is termed a trial. The LKH algorithm begins a trial by randomly gencrating
an initial solution, which is iteratively improved using the variable A-Opt neighborhood function. A trial ends
when a local minimum is attained. Define a run as a set of trials. The maximum number of trials in a run. T, is
a user-defined input parameter, which is typically the number of cities for a given TSP problem. However, if
the globally optimal solution value is specified as one of the LKH input parameters, a run may end
prematurely, in which case a trial returns a globally optimal solution. A replication is a set of K runs. The
experimental data from a single replication is used to estimate H', which in turn is used to compute £°;.

Thirty replications of K=100 independently seeded LKH runs were executed to estimate Er(tp), using £, .
The maximum number of trials in a run, T, was set equal to the number of eitics for each given TSP instance.
The resulting data was then used to compute £'; (and the associated sample standard deviation estimator sgt

for each value of B. All thesc valucs are reported in Table 2.1.

To assess the validity of these estimates for Er(tp), the LKH was modified such that a set of runs were
executed until Ry = 500 independently seeded replications visited Dy, where each run was reinitialized by
resetting the algorithm with a new randomly generated initial solution. The resulting data was then used to
compute the mean and sample standard deviation estimates for 1g; these values are also reported in Table 2.1.
To statistically compare the estimators, two-sided hypothesis tests were performed for different values of B,
with null hypothesis Hy: E'r - Ey[tg] = 0 and alternative hypothesis Ho: E'r - Ey[t] # 0; the resulting test
statistic values and the associated p-values are reported in Table 2.1.

The third and fourth column values reported in Table 2.1 represent the number of trials required to visit -
acceptable solutions. For example, for problem RLI1889, the estimator predicts that 803 LKH trals are
required (on average) to visit a solution that is within 0.01% of the optimal solution. In Table 2.1, when the p-
value associated with cstimator E'T is greater than $0.05%, then the corresponding estimated value is
highlighted in bold; such values mean that the point estimator and the validation estimate for E(tp) are
statistically indistinguishable (i.e., with a Type I error of a = 0.05). Note that the LKH computer experiments
were performed using the LKH-1.3 package (LKH 2005), written in C. All computer experiments were
executed on a DELL OptiPlex G620, 3GHz Pentium D with 2GB of RAM.

Among the fiftecn LKH algorithm results reported in Table 2.1 that were validated, all the E', estimated
values are statistically indistinguishable from the validation estimates ET(rB). at the a = .05 level. Table 2.2

reports the computation times for the cstimation and validation phases for the eight test Eroblcms. The
computer experiment CPU times (per set of 100 LKH runs) for each TSP instance for the £, estimation
experiments ranged from between 195 CPU seconds and 20.5 CPU hours. The exccution times for each
completed validation experiment (all Ry = 500 replications) ranged from between 4723 CPU seconds and
1918 CPU hours (around 80 CPU days). based on the size of the TSP instance. The results from Table 2.2
suggest that the proposed estimation procedure is computationally cfficient in obtaining good estimates of

ET[T[}]-
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Lin-Kernighan-Helsgaun Algorithm ;:stiftsz .flor Estimating E1(73)
Problem Statistics Hypothesis Test
Instance 3/ f (EZ., %,\ (ETir3). ’\L%.%l) Z p-value
PCB442 1 (107, 5) (106. 8) 007 0.5
f* = 50778
PR1002 ik (305. 9.2) (297, 12.5) 0.458 0.63
f* =250045 | 1.0001 {92, 5.4) (86. 6.9) 0.67 0.50
RL1589 1 (1879, 114.8) (1913. 106} -0.23 0.82
f*=316536 | 1.0001 (B03, 8%) (651. 55) 1.46 0.14
D2103 | 1.0001 | (64745, 7734.7) (50503,2069.6) | 1.78  0.08
f*=80450 | 1.0002 | (7574.301.2) (6437. 297) 1.51 0.13
U2152 1 (7TT8R, 273 .4) (7165, 2858.37) 1.59 0.11

f*=64253 | 1.0001 {3220, 88.3) (3315, 163.4y | -0.51 0.61

PR2392 1 (303. 3.9) (300, 9.4) 0.32 0.75
f*=378032 | 1.0001 (86.1.1) {90. 3.4) -0.9 0.37
PCB3038 1 (2152, 23.2) (2249. 115.5) | -0.82 0.41
f*=137694 | 1.0001 (1506, 24.7) (1354, &7) 1.68 0.09
FNL4461 1 (7145, 231.6) (7490, 323.7) | -0.87 0.39
fr=182566 | 1.0001 {202, 3.9) {210. 15.8) -0.53 0.6
Table 2.2
Lin-Kernighan-Helsgaun Algorithm Computation Times
Estimation | Validation
Problem Instance CPU CPU
Pcbd42 (f*= 50778 ) 201 sec. 4723 sec.
Pri002 ( f*=259045) 195 sec. 47519 sec.
RI1889 ( /*=316536) 4170 sec. | 684376 sec.
D2103 ( f*=80450) 15 hr. 1793 hr.
U2152 (f*=64253) 18389 sec. | 341218 sec.
Pr2392 ¢ f*=1378032) 2700 sec. 16600 sec.
Pcb3038 (/*= 137694 ) 8.9 hr. 585 hr.
Fnl4461 ( /*=182566 ) 20.5 hr. 1918 hr.

The data collection for estimating £(tg) can be eomputationally intensive and in some cases. redundant.
Work is in progress to develop estimation techniques to collect data as the algorithm executes, rather than
collecting data off-line and applying the results to a local search algorithm retrospectively. Another limitation
of the computational analysis presented hcre is the requirement for the local search algorithm to be executed
with multiple restarts. However, this is not a major drawback, sincc such a setting is the most typical for
practical use of local search algorithms. More practical questions can be addressed in the future if an
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e o
expression for the rate of eonvergence of the estimator £ to Er(tp) as a function of T and K is obtained; this
1s an aetive eurrent area of investigation.

This researeh is intended as a stepping stone towards developing a general framework for providing
prospective information on local search algorithm performanee. Using an array of statistieal tools to analyze
the eonditional CDF, P(f(o""' < x | nest(1)), @s a function of the best-to-date solution @y (t), may be the key
for this effort. Work 1s in progress to determine how these distributions evolve as the eurrent best solution
approaches global optima, and to predict values of £4{(tp) for values of B that have not yet becn reached.

3. A Post-Optimality Framework for Multi-Criteria Optimization

Multi-objeetive optimization algorithms ean generate large sets of Pareto optimal (non-dominated) solutions.
Identifying the best solutions across a very large number of Pareto optimal solutions ean be a challenge.
Therefore it is uscful for the deeision-maker to be able to obtain a small set of preferred Pareto optimal
solutions. Kao and Jaeobson (2008) introduee a diserete optimization problem framework for obtaining
optimal subsets of solutions from large sets of Pareto optimal solutions. Kao and Jaeobson (2008) prove this
problem to be NP-hard. and provide two exaet algorithms and five heuristies to address this problem. They
also reports eomputational results with five test problcms, to eompare the pcrformanees of these algorithms
and heuristies. The results suggest that preferred subset of Pareto optimal solutions ean be efficiently obtained
using the hcuristics, while for smaller problems, exaet algorithms should be applicd.

Many rcal-world optimization problems involve multiple (and often conflicting) objectives. These
problems are relevant in a variety of engineering disciplines, scicntific fields, and various industrial
applications (Coecllo et al. 2002, Ehrgott and Gandibleux 2002). Unlike single objcctive optimization
problems, where one attempts to find the best solution (global optimum), in multi-objeetive optimization
problems, there may not exist onc solution that corresponds to the best with respect to all objeetives. Solving
a multi-objeetive optimization problems econsist of generating the Pareto frontier (i.e., the set of non-
dominated solutions that represents the trade-off among the objective funetion values. Different approachcs
have been explored to approximate and generate such sets of Pareto optimal solutions. Some interaetive
approach incorporates preferences into the optimization procedure to explore a specifie region of the solution
spaee, while other approaches foeus on generating a diverse set of Pareto optimal solutions. Sueh sets of
Pareto optimal solutions can be cxtremely large, which motivates the need for post-optimality analysis for
multi-objeetive optimization problems. The area of post-optimality analysis addressed by Kao and Jacobson
(2008) focuses on obtaining a preferred subset of solutions from a very large set of solutions with aceeptablc
objeetive function values. The goal in obtaining large sets of Pareto optimal solutions is to provide the
decision-maker with a diverse set of such solutions. Although obtaining diverse Pareto optimal solutions is
important, it is often impractical for a human decision-maker to manually examine each such solution, and
hence, efficiently identify a good subset of such solutions. Previous research in this area has focused on
generalizing the rcpresentation of the full set of Pareto optimal solutions with a smaller subset (Kasprzak and
Lewis 2000, Mattson et al. 2004). Such procedures are not post-optimality analysis procedures, but rather,
extensions to multi-objective optimization proeedures, which are designed to generate diverse sets of Pareto
optimal solutions (Messae and Mattson 2004, Messae et al. 2003, Kasprzak and Lewis 2001). Another area of
researeh that ineorporatcs preferenees into the optimization proeedures are interactive methods (Miettincn
1999, Miettinen and Makela 2000). These interactive methods provide a decision-maker with bettcr control
over the optimization proeess. allowing them to explore speeifie regions of the seareh space. However,
solutions obtained are quite sensitive towards the preferenccs of the deeision-maker. These approaehes also
require the deeision-maker to have a thorough knowledge of the problem. Korhonen and Halme (1990)
suggest the use of a value funetion in helping decision-makers to identify the most preferred solutions.
Alternatively, to objeetively evaluate and distinguish good subsets of Pareto optimal solutions, Das (1999)
proposes an ordering and degrec of efficiency among Pareto optimal solutions, which provides a way to
measure and prune out less desirable Pareto optimal solutions. The general problem of post-optimality has
not been addressed, in it purest form, due to his extreme difficulty and the inability to create a mathematical
framework to model it.

Kao and Jacobson (2008) introduce and analyze a discrete optimization problem framework for obtaining
a preferrcd subset of Pareto optimal solutions from a larger set. This framework alleviates the sensitivity of
value funetion approaches, while obtaining a desired size subset of Pareto optimal solutions. They introduee
two exaet algorithms for solving the diserete optimization problem. They also provide five heuristies that
obtain near-optimal solutions. The eomplexity of the discrete optimization problem formulation is presented.
The cxact algorithms and heuristics are applied to five test problems of various sizes, to provide comparisons
of thcir computational performanccs.

Kao and Jacobson (2008) describe in detail the discrete optimization problem framework for post-
optimality analysis of Pareto optimal solutions. Top dcscribe this framework, consider the multi-objective
optimization problem:
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Min F(x) = (f1(x), 2(X).... , fk(x)) =z =(z1, 22, ..., Zk)

subjectto: x €S
with k (= 2) objective functions fi : R" -2, i = 1, 2,..., k, where the decision variables x = (x1, x2, ..., xn)
belong to the feasible region S < R".
Kao and Jacobson (2008) provide formal definitions for a Pareto optimal solution, a value function, a

: ; x : 2 N
percentilc vector (of each Pareto optimal solution), and the percentile space. Lct el o A o R
denote a set of Pareto optimal solutions, which may not contain the complete set of all Pareto optimal
solutions. By definition, given a sct of Pareto optimal solutions, S, for every x’' §Pj=1,2,..., N, there

exists a unique percentilc vector pj . Therefore, there is a one-to-one mapping for all x € %10 some pj €
@k, termed the percentile set (formally dcfined in Kao and Jacobson 2008). A percentile function g (0,11
— % is a value function on the percentile space.

The defined preferred Pareto optimal solution subset(s) can be obtained by solving the following discrete
optimization problem, which optimizes the percentile function g.

max g(pl, p2, ..., pk)
subject to: [N, 2N’

wherc N, = {x € 87 1 pi(x) 2 pi, i=1,2, ..., k}, N’ is thc minimum numbcr of solutions in the preferred
subset of Pareto optima S°°, and pi, i = 1, 2, ..., k, correspond to the percentile threshold for each of the k
objectives. This discrete optimization problem formulation is termed the Prcferred Pareto Optimal Subsct
Problem (PPOSP).

The PPOSP is formulated over the percentile sct. There are several advantages in optimizing over the
percentile set rather than the objcctive function space. In many real world multi-objective problems, the
objective functions typically have different evaluation metrics and units. For example, objective functions can
measurc costs, distances or volume. There may also be a large range of values associated with the different
objective functions. Normalizing and adjusting these values require application-dependent knowledge and
expertise. The percentile set on thc percentilc space uses a ranking (ordinal) approach, which normalizes the
different objective functions, comparing the relative order instead of the value of each objcctive function.
Another advantage of working in the pcrcentile space comes from a usability perspective. It is often much
easier for a decision-maker to visualize solutions in terms of ranks as opposed to actual valucs. The ability to
use actual values also require detailed expert knowledge of the problem, where as ordinal ranking allows for
generalization. This ability to encapsulate the data for simpler representations can be beneficial to the
subsequent decision process. By transforming the data into percentiles, detailed information regarding the
objective function values of the solutions will be lost. Sec Kao and Jacobson (2008) for specific examples to
illustrate these points. Kao and Jacobson (2008) also show how the PPOSP can be generalized by using
different range normalization approaches.

There are two preferential parameters in PPOSP, the size of the dcsire subset, N0, and the structurc of the
percentile function, typically in the form of a value function (e.g., a convex combination of the objective
functions). The optimal threshold percentile vector(s) for the PPOSP define(s) the preferred reduced subset of
solutions, N,,. Each of the threshold percentiles is analogous to the weight preferences used in the value
function approach (Korhonen and Halme 1990). Howcver, instead of manually assigning wcight preferences
for each objective function, this manual procedure is captured within the PPOSP, which provides a method
for filtering undcsirable solutions (i.e., solutions that do not satisfy the threshold values found by the
PPOSP). Finding such a reduced subset of Pareto optimal solutions reduces the burden on the decision-maker
to closely examine a large number of Parcto optimal solutions.

Kao and Jacobson (2008) prove that thc corresponding decision PPOSP problem and the more general
decision problem, without the Pareto property, are both NP-complete. For clarity, dcfine ei to be a vector of

size k, wherc all components are 0 except for the i/ component. A formulation of the corrcsponding decision
problem for the PPOSP and its more general form arc given.

Dominating Pareto Subset Problem (DPSP)

INSTANCE: Finite Pareto set U c Z", |U| = N, positive integer B and N’, where N’ < N.
QUESTION: Does there exist a subset U’ < U, such that £;-) 5 min, .- (ei® u)>8B and [U’[>2N"?
A more general formulation of the DPSP is to remove the Pareto restriction on the set U.
Dominating Subset Problem (DSP)

INSTANCE: Finite set U < Z", |U| = N, positive integer B and N, where N' < N.

QUESTION: Does therc exist a subset U” < U, such that T._; > i min, - (ei® u) 2B and |U’[=N"?

Kao and Jacobson (2008) prove that DPSP and DSP are NP-complete using a polynomial transformation
from Max N-M Biclique Problem, which also had to be proven to bc NP-complctc using a polynomial



&
2] iz W

transformation from the NP-complete Maximum Edge Biclique Problem (Peeters 2003). Kao and Jacobson
(2008) show that DPSP is polynomial for & = 2 (i.c., for a bi-objective problem, the optimal subset N,,; can be
found in O(|S™| log |S7]) time). To see this, sorting the solution percentile vector along a single objective
function provides an ordering, which also implicitly provides an ordering for the second objective function
(due to the Pareto property). Enumerating all consecutive N’ subsets of the ordered set finds the optimal
subset of Pareto optimal solutions (see Deterministic Sorted Local Scarch in Kao and Jacobson 2008).

Kao and Jacobson introduce two exact algorithms and five heuristics for finding optimal/near-optimal
solutions for the PPOSP. Two different enumeration approaches are presentcd for solving the PPOSP. Since
the threshold percentile vectors define unique subsets of Parcto optimal solutions, the PPOSP can also bc
solved by enumerating ovcr all threshold percentile vectors. This cnumeration, termed the Diagonal
Enumeration (DE) algorithm, takes o(|S” OI") time. Alternatively, another approach is to enumerate all
possible subsets of Pareto optimal solutions of sizc N'. This enumeration, termed the Branch and Cut (BC)
algorithm, takes O(|SPO|") time. Depending on the parameters $™°, N, and , the two different brute force
enumerations rcsult in different running time performances.

The DE algorithm avoids enumerating over all combinations of threshold percentile values. Depending on
the threshold percentile vector, the corrcsponding subset N, may have size less than N'. In order for the
percentile value function to be maximized with respect to N’, the size of N,,;, must equal N'. If [Nyl > N
then by reducing the size of N, ¢ will cither remain the same or increase. Lemma 3.1 states this formally.

Lemma 3.1 (Kao and Jacobson 2008): If Uc S and U’ < U, where p (p’) is the corresponding threshold
percentile vector associated with U (U’), then q(p) < q(p’).

The DE algorithm exploits the results in Lemma 3.1 to avoid performing a full enumeration by
constructing a k-dimensional table (called the DE table), where cach entry within the table corresponds to a
subset of Pareto optimal solutions. By design, each of the 4 dimensions corresponds to the k objective
functions, wherc the indices along ecach of the dimensions correspond to percentile values. These indices also
represent the sorted order of the percentilc values (i.c., index i along dimension j corresponds to the i
smallest percentile value of the j* objective function.) The index of each entry can therefore bc mapped to a
valid threshold percentile vector.

The enumcration is done by systematically constructing the DE table in a diagonal manner (as illustrated
in Figure 2 in Kao and Jacobson 2008). The advantage in constructing thc DE table in such a manner is to
avoid a full enumeration. If all entries along a single diagonal pass of the DE rable fail to contain at least N’
clements. then the enumeration process can be terminated, since all diagonal passes thereaftcr will only
contain percentile vectors with larger components. Furthermore, it is unnecessary to enumerate indices along
a particular dimension if the size of the corresponding subsets is less than N’. In the worst case, this algorithm
will construct the entire DE table, and hence, the running time is O(|S”").

The DE algorithm solves the PPOSP by enumerating all combinations of percentile values of the
threshold percentile veetor. Alternatively the PPOSP can be solved by enumerating all subsets of Pareto
optimal solutions of size N'. This enumeration approach is used to construct the BC algorithm. This
enumeration approach can be done by constructing |S”| search trees. where each node of a search tree
corresponds to a subset of Parcto optimal solutions, and the root of each search trec is a unique clement of
577 The second level of each of the search trees consists of all 2-element subsets constructed by adding a new
element to the root. The third level consists of all 3-element subsets by adding a new element to its parent.
Each level of the search trees is constructed by adding a new element to the parent. Therefore, each search
tree will have at most N’ levels, where if all of such search trces are fully constructed, then this corresponds to
enumerating all N’ subsets. The BC algorithm constructs each of the N’ search trees, starting at the root.
However, it avoids performing a full enumeration by deciding whether to branch or cut at each node of the
different search trees. Since ecach node in the search tree corresponds to a subset of Parcto optimal solutions,
the corresponding percentile function value can also be calculated. If at any node, the percentile function
value is less than the current best percentile function valuc of a subset with N’ elements, a cut is performed at
that node and further enumeration along that branch is unnecessary, since from Lemma 3.1. any further
branching along such nodes will only decrease the percentile function value.

A random subset of Pareto optimal solutions of size N’ is gencrated for the initial best-to-date percentile
function valuc. The higher thc initial percentile function value, thc less branching that is nceded for the
enumcration. Howcver, in the worst case, the BC algorithm corresponds to enumerating all subsets of Pareto
optimal solutions of size N0, and hence the worst case running time is S1*).

Kao and Jacobson (2008) also introduce two constructive heuristics for finding good solutions to the
PPOSP. The Greedy Constructive Elimination (GC-) heuristic creatcs a preferred subset of Pareto optimal
solutions by eliminating elcments from S70 until the size of the preferred subset is N'.  The GC- heuristic
starts by considering the full set of Pareto optimal solutions $7_ 1t then finds a subset of S” of size N’ by
iteratively eliminating elements from $7°. The percentile vector, which providcs the best improvement over
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the percentile function value if it is removed, is eliminated at cach itcrativc step. In the casc of ties, a
randomly selected percentilc vector among the ties is eliminated. This heuristic has running time of O(|SPO)).
In contrast, the Greedy Constructive Expansion (GC+) hcuristic builds a preferrcd subset of Pareto optimal
solutions by adding elements to an empty set until the size of the subset is N'. The GC+ heuristic is motivated
by the BC algorithm. Like the BC algorithm, it starts by considering 17| subsets of Pareto optimal solutions,
each with a single distinct clement of S°”. However, unlike the BC algorithm, at each level in constructing a
scarch tree, the GC+ heuristic greedily selects the best node to branch (i.e.. an element is added to the current
subset(parent) only if it decreases the percentilc function value of the current subset the least). In the case of
tics, a random solution is selected. A cut is performed, as in the BC algorithm, based on the best-to-date
percentile function value. The GC+ heuristic builds |S°°| such search trees with distinct roots, where each
search tree is a simple path of length at most N'. Since each of the elements in 570 are used as the initial
subsets, there could be |S7°| different subsets of Pareto optimal solutions of size N’ (i.e., each of the |S™|
different search trees) . The intuition behind this heuristic is to find an optimal constructive ordering (i.e., an
optimal ordcring of increasing the initial subset such that the resulting subset of Pareto optimal solutions is
optimal), where constructing each subsct of Pareto optimal solutions takcs O(|S°’|N’) time. Since there are
IS°| such starting subsets, thc worst case running time for the GC+ heuristic is O(S”°F* N"). Both of these
heuristics use a greedy selection rule. For additional details on these heuristics, see Kao and Jacobson (2008).

Kao and Jacobson (2008) also introduce three local search heuristics. Local search heuristics are typically
characterized by the following three steps:

1. Gencrate a feasible solution, s.
2. Attempt to find an improved feasible solution s’ in a ncighborhood of s.
3. If improved solution is found, replace s with s’. Repeat from Step 2.

The Deterministic Sorted Local Search heuristic examines subsets based on the sorted ordering of each
objectivc function. This heuristic is different from the typical local search heuristic in that it uses a fixed
deterministic neighborhood. The Elcment Exchange Local Search heuristic and the Percentile Neighborhood
Local Search heuristic differ primarily in their neighborhood functions. While the Element Exchange Local
Search heuristic defines its neighborhood function by altcring the subset of Pareto optimal solutions, the
Percentile Neighborhood Local Search heuristic dcfines its neighborhood function by perturbing the threshold
percentile vector.

The Deterministic Sorted Local Scarch (DSLS) heuristic examines subsets of Pareto optimal solutions of
size N’ by considering percentile vectors sortcd by one of the objective functions. Therefore, S° is sorted k
times by each objective function (i.e., there are 4 different sorted ordering of 579, where each of the k sorted
‘orderings is examined by considering subsets of size N’ with consecutive eclements in the sorted S7 The best
percentilc function value found is then returned. Since traversing each sorted 570 takes lincar time, the sorting
of 8¢ dominates this heuristics' running time. In particular, the DSLS heuristic has running time O(k|S"| log
IS”°}). Lemma 3.2 shows that in a bi-objective problem, a subset of Pareto optimal solutions cannot have the
maximum percentile function value unless the subset contain only elements that are consecutive in a sorted
ordering based on one of the objective functions. Using this result, the DSLS heuristic finds the optimal
subset of Pareto optimal solutions for the bi-objective problem.

Lemma 3.2 (Kao and Jacobson 2008): Let U = §7° < R (u'y,u’y) ¢ U. If there exists some (uy,13), (vi,v2) €

U such that uy > u’y and v2 > u's, then the corresponding percentile function value of U cannot be the
optimal.

By the Pareto property, sorting S’ based on one of the objcctive functions implicitly sorts the other
objective function values. This ordering is a necessary condition for optimality, as shown in Lemma 3.2 for &
= 2. Moreover, since Lemma 3.1 states that the optimal subset must be of sizc N’, then the DSLS heuristic
must find the optimal solution for the bi-objective problem.

The Element Exchange Local Search (EELS) hcuristic uses a single clement exchange neighborhood
function. The singlc element exchangc neighborhood function transforms a feasible subset of Pareto optimal
solutions by substituting percentile vectors in and out of the current feasiblc subset of Pareto optimal
solutions. By design, this single clement exchange neighborhood function can enumerate all possible subsets
of size N". This neighborhood function is quite general and provides limited direction for the local search. To
provide more restrictions and to increase efficiency of the local search, two greedy modifications are added.
The first modification forces the neighborhood function to greedily select the best elecment for the singlc
element exchange, which provides the largest improvement to the percentile function value of the current
feasible subset of Pareto optimal solutions. The sccond modification limits the candidate percentile vectors
considered for the feasible subsets of Pareto optimal solutions. An element that has been removed from the
current subsets of Pareto optimal solutions is eliminated from any further consideration. The single element
exchange neighborhood function is modified to only consider elements in the pool, defined as the set of
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candidate clcments that have not been considered in any feasible subsets. T}E;e two greedy modifications
significantly increase the cfficiency of the EELS heuristic. Sinee cach percentile vector can be exchanged into
a feasible subset at most once, and at each iteration there are at most [S”| comparisons, then the worst case
running time for a single starting initial feasible subset is O(S™|"). The single clement exchange
ncighborhood function is of size [S”|. One variation of this neighborhood funetion is to perform multiple
clement exchanges. However, increasing the numbcr of exchanges also incrcases the size of the
neighborhood. Since the size of thc neighborhood increases exponentially, greedily selecting the best
pereentile veetor would be infeasible, although such an cxpanded neighborhood would reduce the number of
local optima. To avoid bcing attracted to the same local optimum, the EELS hcuristie is restarted with new
random initial subsets. If the numbcr of restarts is given by C, then thc worst easc running time for the EELS
heuristic is O(C [S”]).

The Percentile Neighborhood Local Search (PNLS) heuristic is motivated by thc DE algorithm. Recall
that cach entry in the DE table corresponds to a subset of Pareto optimal solutions. The DE algorithm may
cnumeratcs many subsets of Pareto optimal solutions, with sizes much larger than N'. Lemma 3.1 shows that
thesc subsets of Pareto optimal solutions are not optimal. The PNLS heuristic modifies the DE algorithm by
avoiding enumeration of entries with corresponding subsets of size greater than N. The neighborhood
funetion for the PNLS heuristic maps each entry in the DE rable to a set of neighboring entries, where an
entry is then visited based on the sizc constraint and the percentile function value. The intuition bchind this
neighborhood function is that neighboring entries should corrcspond to subsets of similar sizes. By sctting the
initial entry with a corresponding subset of size N’, this allows the heuristic to cxaminc entrics with
corresponding subsets of similar sizes. In the worst case, this neighborhood function may enumerate the full
DE table. The PNLS heuristic biases the neighbor selection to avoid enumerating the full DE table. A new
neighboring entry is seleetcd based on the sizc of the corresponding subsct as well as the corrcsponding
pereentile function value. Subsets of size N” with improving percentile function valuc arc considcred first.
The heuristic terminatecs when a threshold, given by T, of non-improvement neighboring searches are made.
The PNLS heuristic is initialized at a starting cntry where the size constraint is at equality. An entry with
subset of size N’ can be found by increasing the percentile value, which then can be used as the initial entry
for the PNLS heuristic. This can be repeated for each of the & objcetive funetions. Sinec the PNLS heuristic
searches for the optimal solution in a state space of size |S” 9%, then it has a worst casc running time of
O(|S”°"), similar to the DE algorithm.

Kao and Jacobson (2008) report extensive computational results with the algorithms and heuristics
described above. These computational results suggest that the GC+ heuristic and
the PNLS heuristic arc the most effcctive in finding the optimal subsct of Pareto optimal solutions. In
particular, the GC+ heuristic found the optimal solutions in 60% of the experimental runs executed, while the
PNLS heuristic found the optimal solutions in 75% of the expcrimental runs executed. The worst-case
GC+/DE and PNLS/DE ratios (i.c., measures of performance for the hcuristics in comparison to thc optimal
solutions found by the DE algorithm) were 0.995 and 0.973, respectively. Although the EENS heuristic did
not find the optimal solutions. it was still very efficient, always obtaining solutions within 10% of the optimal
solutions. The GC- heuristic and the DSLS hcuristie always found solutions within 20% of the optimal
solutions. For a complete discussion and details on these computational results, sec Kao and Jacobson
(2008).

Multi-objective optimization problems occur in numerous real-world applications. Solving such problems
can yield a large number of Pareto optimal solutions. Kao and Jacobson (2008) examincs thc question of
identifying prefcrred subsets of Pareto optimal solutions. The formulation of the discrcte optimization
problem, PPOSP, is designed to assist a deecision-maker in finding preferred subsets of Parcto optimal
solutions. Thc PPOSP introduces a new approach to address the post-optimality seleetion problem. by
providing a framework that minimizes the need for expert knowledge in the decision-making process, and
henee, reducing the burden on the decision-maker so as to focus their attention on preferred reduced subsets
of Pareto optimal solutions. The PPOSP allows the decision-maker to obtain a desirable subset size N, based
on threshold values for each objective function. Moreover, it does not require expert knowledge in finding
such reduccd preferred subsct. which then allows the decision-maker to focus on smallcr sets of preferred
Pareto optimal solutions. In addition, unlike typical value function approaches, the PPOSP is formulated in
(but not limited to) the percentile space, which provides in ordinal approach in addressing the post-optimality
seleetion problem. The decision formulation of the PPOSP is formulated and proven to be NP-complete. Two
exact algorithms, the DE algorithm and the BC algorithm, arc provided for solving the PPOSP to optimality.
Five heuristics are also presented, which provide a spectrum of heuristies with varying trade-offs in solution
quality and run time efficiency. The expcrimental rcsults reported suggest that the GC+ heuristic can yicld the
best results, if running time can be sacrificed. Otherwise thc EELS heuristic provides the best trade-off,
cfficiently returning quality solutions. Note that the heuristics presented in this paper do not require the set of
solutions to be Pareto. Although the decision problem for a non-Pareto set is also proven to be NP-complete,
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it is not clcar what the impact of the Pareto property has on these heuristics. The Pareto property provides
structure to the feasible solution set for the PPOSP. For bi-objective problems, the DSLS heuristic uses this
structure to find the optimal solution. However, it is not apparent, at this time, how one can exploit such
structure in higher dimensional problems. Providing higher levels of encapsulation, while retaining the
consistency of the decision-maker preferences, is an area of current research aetivity. Another area of research
is to address the scalability of thc heuristics and algorithms higher dimensional problems. The ultimate goal
of this cffort is to design a fully automated post-optimality selection process; work is in process to design
such a procedure.

4. A Sequential Stochastic Security System Design Problem for Aviation Security

Aviation security is an issuc of national conccrn. The events of September 11, 2001, prompted multiple
operational changcs at all commercial airports, as wcll as sweeping changes in aviation security policy (Mead
2002, 2003). An important class of problcms that arise in aviation sccurity is the screening of passengers prior
to boarding an aircraft. Developing strategies to effectively and efficiently screen passengers, as wcll as
allocate and operate screening devices, can be quitc challenging. Moreover, even after such systcms are in
place, it can be vcry difficult to measure their cffectivencss.

The Aviation and Transportation Security Act (ATSA), enacted on November 19, 2001, by the United
States Congress, transferrcd aviation security responsibilitics from the Federal Aviation Administration
(FAA) to the (ncwly-created) Transportation Security Administration (TSA), housed within the United States
Department of Homeland Security. An important aviation security policy changc that was part of the ATSA
was the requirement for 100% checked baggage scrcening by December 31, 2002. Prior to this, only a small
fraction of checked baggage was screened, based on the Commission on Aviation Safety and Security,
cstablished on July 25, 1996 and headed by (then) Vice-President Albert Gorc, which recommended that the
aviation industry improve security using existing explosive detection technologies, automated passenger
prescreening, and positivc passengcr-baggage matching. Up until that time, the FAA had been working with
the airlines to annually purchase and deploy explosive detection systems (EDSs) at airports throughout the
United States. From 1998 until Scptember 11, 2001, EDSs were only used to screen checked baggage of
selectee passengers, those who were not cleared by a computer risk assessment systcm (i.c., the Computer-
Aided Passcnger Prescrcening System --- CAPPS) developed in conjunction with the FAA, Northwest
Airlines, and the United States Department of Justice. The checked baggage of nonselectee passengers (i.e.,
those who were cleared by such a system) reccived no additional security attention. There were no further
security screening differences between selcctee and nonselectee passengers. The 100% checked baggage
screening policy eliminated the distinetion bctween sclectee and non-selectee passcngcrs.

The primary objective of 100% checked baggage screening is to improve security operations at the nation's
commercial airports. To mect this objective, thc TSA is committed to develop new security system paradigms
that can optimally use and simultaneously coordinate several security technologics and procedurcs. 1n 2005,
there werc over 650 million passengers traveling in the United States, with forecasts of nearly one billion
passengers by 2015 (FAA 2006). Recent research suggests that greater scrutiny of passengers pereeived as
high risk (from a security standpoint) is more cost-effective. Butler and Poole (2002) suggest that the TSA's
policy of 100% checked baggage screening is not cost-effective and that enhancing the binary screening
paradigm to a multilevcl screening system would be more cost-effective. Poole and Passantino (2003) endorse
risk-based aviation security procedures, assigning passengcrs and baggage to sccurity dcvices in proportion to
their perccived risk. They suggest that multiple levels of security may be more effective than treating all
passengers as indistinguishable (from a security standpoint).

The TSA further developed computerized risk assessment systems with the introduction of CAPPS Il an
enhanced computcr-based system for systematically prescreening passcngers, which partitions passengers into
three risk classes (as opposed to two classcs by CAPPS), plus pays special attention to individuals on terrorist
watch-lists available from government intelligence agencies. A frequently mentioned criticism of any systcm
designed to classify passengers into risk classes, including CAPPS and CAPPS 11, is that such systems can be
gamcd through extensive trial and error sampling by a varicty of passengers through thc system (Bamnctt
2001, Chakrabarti and Strauss 2002). Martonosi and Barnett (2006) and Martonosi (2005) note that trial and
error sampling may not increase the probability of a successful attack and that CAPPS Il may not
substantially improve aviation security if the screcning procedurcs for each type of passenger arc not
effective. Barnett (2004) suggests that CAPPS 11 may only improve aviation security under a particular set of
circumstances and recommends that CAPPS 11 be transitioned from a sccurity centerpiece to one of many
components in future aviation security strategies. On July 14, 2004, the TSA announced the dismantling of
CAPPS I (due to privacy concerns), despitc having invested $100M into its development (Hall and DeLollis

2004). Shortly thercafter, the TSA announccd the development of Secure Flight, which would focus
exclusively on terrorist watch-lists (Singer 2004).
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Several articles formulate aviation security problems as integer programming and discretc optimization
models. Jacobson et al. (2001) provide a framework for measuring the effectiveness of a baggage sereening
seeurity devieec deployment at a particular station (€.g., an airport terminal). Jaecobson et al. (2003) introduce
three performanee measurcs for baggage screcning seecurity systems and use these models to assess their
seeurity impaet on system design for single or multiple stations. Jacobson et al. (2005a) formulate problems
that model multiple sets of flights originating from multiple stations subjeet to a finite amount of resourees.
These problems eonsider three performancc measures, and examples suggest that onc of the performance
measures may provide more robust screening device allocations. Virta et al. (2002) consider the impact of
originating and transferring selcetee passengers on the effectiveness of baggage screening sceurity systems. In
particular, they eonsider classifying selcetee passengers into two types; those at their point of origin and those
transferring. This analysis is noteworthy since at least two of the hijackers on September 11, 2001 werc
transferring passcngers. Babu et al. (2006) investigate the advantages of partitioning passengers into sevcral
groups, where a diffcrent screening strategy is used for passengers in each of the groups and the probability
that each passenger is a threat is assumed to be eonstant. MeLay et al. (2005) analyze cheeked baggage
sercening systems that use a presereening system and different baggage screening devices, one to screen
baggage of seleetee passengers and the other to sereen baggage of nonselectee passengers. MeLay (2006)
identifies models for designing seeurity systems that partition passengers into several groups using diseretc
optimization, dynamie programming and heuristies. A problem that models sequential, stochastie passcnger
arrivals is considered, and an optimal sereening poliey is determined.

Rescarch attention has also focused on thc experimental and statistical analysis of risk and sccurity
procedurcs on aireraft. Barnett et al. (2001) report the results of a large-sealc two-week experiment at scveral
commereial airports to assess the costs and disruptions that would arise from using positive passengcr
baggage matehing (an aviation seeurity proecdure) for all flights. Barmectt et al. (1979) and Bamett and
Higgins (1989) study mortality rates on passenger aireraft and perform a statistieal analysis on these data.

Aviation seeurity deviees deployed at airport seeurity cheekpoints are used to deteet prohibited items (e.g.,
guns, knives, cxplosives). Each sccurity deviee provides a different levcl of sccurity for passengers, and
determining the types of sceurity devices to deploy ean be challenging. Morcover, onee such sceurity devices
arc deployed, the practical issuc of determining how to optimally use them can be difficult. For an airport
security system design problem, one objeetive i1s to maximize the security of passengers given an available
budget. However, therc arc many ways to define security. For passenger screening, security may bc mcasured
by the number of prohibited items detected as a result of sereening, or the probability that a given percentage
of such items is prevented from being carried onboard an aircraft. In the worst casc, each passenger is a threat,
sinee they have the potential to earry a prohibited item onto an aireraft. The reasoning behind such a
classification is that even if a passenger does not intend to be involved in a planned attack targeted at an
aireraft, a prohibited item that is earried onto an aireraft by one passenger may be used by any other passenger
on the samc airplane.

A systematic approach is presented for designing a passenger and carry-on baggage sereening system using
stochastic optimization and sequential assignment theory (Derman et al. 1972). The two key componcnts of
passenger sereening are the deviee alloeation problem (i.e., the purchase and installation of security deviees)
and the passenger assignment problcm (i.e., the operation of security dcvices), which to date have been
addressed as separate problems. These problems are addressed simultaneously using models for optimally
designing and operating security device systems. These models can bc used to provide insights into the
operation and performance of passenger screening, under the assumption that a passenger prescreening
system (such as CAPPS) has been implemented and is highly cffective in identifying passenger risk ((TSA
2005).

Designing an effective passenger sereening system requires two stages: purchasing and installing seeurity
deviecs and sereening passengers with these security deviees. A passenger sereening system's effcetiveness
depends on dceisions made in both of these stages and refleets the ability of a sceurity system to prevent
threat items from being carricd onboard an aircraft. Although purchasing and installing seeurity deviees is
often done several months or years prior to their usc, aviation sccurity systems are designed based on their
expeeted future value, estimated passenger throughput, and the averagc number of prohibitcd items that
passcngers may attempt to carry onto an aircraft. Similarly, sereening passengers in real-time depends on the
seeurity deviees that have been installed and are available.

Scveral definitions and terms are needed to describe the two-stage model framework. A threat item is any
objeet earried by a passenger that is prohibited by the TSA. Threat items inelude weapons, explosives,
ineendiaries, and other items that may appear harmless but can be used to inflict damage on an aircraft (TSA
2004). Note, that the definition of a threat item ean change based on intereepted attacks, intelligenee, and the
DHS eolor-eoded threat level (for example, in August, 2006, in London terrorists intended to use liquid
explosives as a mcans of attacking and destroying several US-bound airplancs; as a rcsult, water bottles were
subsequently elassified as threat items). A security device is an aviation seeurity tcehnology and/or procedure
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used to identify a threat item. Examples of security dcvices include x-ray machincs (designed to detect knives
and guns in carry-on baggagc), explosive trace detectors (designed to detect trace particles of explosives in
carry-on and checked baggage), cxplosive detection systems (designed to detect explosives in chccked
baggage), and detailed hand search by an airport security official (designed to dctect items not found by metal
detectors and to resolve alarms issued by such detectors). A ser of security devices is a group of security
technologies and/or procedures that can be collectively considered for use at an airport security checkpoint.
By design, a set of security devices may contain several identical security devices. A security class is defined
by a preassigned subset of a set of security devices through which passengers are processed prior to boarding
an aircraft. The security level of each security class is a measure based on the security procedures with each
security device used to screen passcngers in that security class. A prescreening system, such as CAPPS,
assigns each passenger an assessed threat value, which quantifies the risk associated with the passenger.
Passenger assessed threat values are random variables, where thc assessed threat value for a specific
passenger is referred to as a realized assessed threat value. The annual cost associated with a security device
includes purchase, installation, maintenance and operational costs as well as the annual salary of security
personnel requircd to operatc the sccurity device. The annual cost associated with a security device is
estimated based on its expected cstimated lifctime.

The security system design problem is formulated as a two-stage passenger screening model. The first
stage is modeled as a deterministic problem that determines the set of security devices to purchase and install,
subject to device-related feasibility constraints (e.g., budget and space constraints). The second stage is
modeled as a stochastic problem that determines how to screen passengers arriving (in real-time) with the
available security devices subject to passenger assignment constraints.

Consider a general representation of the security system design problem, formulated for a particular
airport. In the first stage, define V as the spacc of all sets of security devices that satisfy the device-related
feasibility constraints, and hence, each v € V is a set of security devices that can be purchased and installed in
an airport. In the second stage, passengers are assigned to and screened by a set of security devices purchased
and installed in the first stage.

Suppose that N passengers are cxpccted to check-in during a given fixed time period. For hub airports in
the United States, airport security resources are allocated based on peak-period passenger throughput (i.c., the
average passenger volume during certain hours (usually 4-12 hours) of regular airport security operation on
any typical day). The idea behind this assumption is that if a certain level of security can be provided during a
peak-hour of airport operation, then all other operational period passenger volumes can be handled as well.
The fcw exceptions (such as periods around major holidays) are handled on a case-by-case basis, by allowing
more peak-hours and/or scheduling extra security personnel on such days.

Define A4 as the set of all feasible passenger assignments, and hence, a € 4 is an N-dimensional vector of
assignment variables. A passengcr prescrecning system is available to provide passenger risk assessments,
and hence, it can be used to determine the assessed threat value for each passenger (i.e., the realized assessed
threat value). The passenger assessed threat values are given by the random vector AT« [0,1]". For a given set
of security devices v € V, a realization of the assessed threat vector are [0,1]", and a passenger assignment
vector a € A, the function G(a, v. ar) measures the level of security. The objective is to identify a set of
security devices v’ & V that maximizes E{max,., G(a, v. AT)]. Therefore, the two-stage model is given by

max, oy E (max, .4G(a,v,AT)), (4.1)

which is an optimization problem embedded within an optimization problem. The objective of the first stage
is to identify a set of security devices that maximize an objective function, which is a function of the solution
of the second stage (i.e., passenger assignments). The objective of the sccond stage is to determine a
passenger assignment for each realization of the assessed threat vector that maximizes an objective function,
which is a function of the solution of the first stage (i.c., the set of security dcvices). Therefore, the two stages
are interdependent, and hencc, must be addressed accordingly.

Several papers model the purchase and installation problem associated with security devices. Jacobson et
al. (2005b) present NP-complete decision problems that capture the deployment and utilization of baggage
screening security devices. McLay et al. (2006) and McLay and Jacobson (2007a,b) formulate problems that
consider budget allocation based on security device costs, and introduce knapsack problem variations to
address them. A greedy heuristic is introduced that obtains approximate solutions. Other research focuses on
assigning passengers to two or more security classes. McLay (2006) considers the real-time operation of
passenger screening systems by formulating a passenger assignment problem as a Markov decision process
and shows how the optimal policy can be obtained by dynamic programming. McLay et al. (2007) solve a
deterministic passcnger assignment problem using integer and linear programming models.

To summarize, Jacobson et al. (2005b), McLay ct al. (2006), and McLay and Jacobson (2007a,b) assume
deterministic distributions of passenger risk levels for device allocation. which corresponds to the first stage
of (4.1). Moreover, McLay (2006) and McLay et al. (2007) assume a given set of available security elasses
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for passcnger assignment, which corresponds to the second stage of (4.1). Thi::escarch combines these two
problems such that an optimal decision/policy is made at each of these stages, making the resulting problem
much more realistic but also more challenging to solve.

The first stage of the model considered (device allocation) answers two questions: what set of security
devices should be installed, and what security classes should be selected given this set of security devices?
Moreover, different security classes are allowced to share security devices, which is not the case in Jacobson et
al. (2005b), McLay et al. (2006,2007), and McLay and Jacobson (2007a.,b). Lastly, with the induced
stochasticity in passenger assesscd threat values, the formulated model is a close approximation to the way in
which airport sccurity checkpoints are designed and used. The model also takes into account an implicit
dependence between purchasing and installing sccurity devices and assigning passengers to such security
devices. A solution to (1) answers the question of how many sceurity devices of each available type should be
purchased and installed, as well as providing a passenger assignment strategy to optimally utilize these
security devices.

The Sequential Stochastic Sccurity Design Problem (SSSDP) is introduced, which models the screcning
operations of passengers and carry-on baggage in an aviation security system. A solution to this problem
provides an optimal sct of security devices to purchase and install, and for a given set of passengers. the
optimal assignment of each passenger to these scecurity devices. To describe SSSDP, consider an airport
security checkpoint where security devices are to be installed and operated, and a fixed time period during
which the passenger arrival rate to the sccurity area in the terminal can bc assumed to be constant (e.g., during
a peak-hour of operation). Assume that the total number of passengers expected to check-in during this time
period is fixed, and that the space requirements and the security device capacitics are given. Upon check-in, a
passenger's asscssed threat value becomes known (i.e., realized), and the passenger is assigned to a security
class. To formulate SSSDP, the following scts, variables, parameters and functions are needed,

N - number of passengers to enter the airport security checkpoint over a given fixed time period,
D - set of sceurity devices available,

¢, - capacity of sccurity device d €D,

s, - space at an airport security checkpoint requirced for sceurity device d €D,

M, - annual cost associated with security device d €D,

J - a set of security classes, defined as a family of unordered subsets of D,

L, - security level associated with security class j € J,

S - space availablc at an airport security checkpoint to install and operate sceurity devices,

B - annual budget available to purchase, install and operate sceurity deviecs,

AT - passenger asscssed threat (random) vector, 4T € [0,1]" where AT; is the assessed thrcat value (random
variable) for passenger i=1, 2,....N,

P,r (at) - probability mass function of assessed threat vector AT.

I; =1 if class j € J contains device d € D, 0 otherwise

X; - number of passengers assigned to security class j 2 J (decision variable),

Y, - number of security devices of type d €D purchased and installed (decision variable).

Sceurity device paramcters are needed to formulate device-specific feasibility constraints in the first stage
of (4.1). The capacity of a security device i1s defined as the upper bound on the hourly rate at which
passengers can be screened by the device. The space parameter of a security device is defined as the area (in
square meters) required by the security deviee when installed and in operation. The annual cost is the amount
of resources (per year) required to purchase, install and operate a security device. The budget is the total
amount of resources available annually for purchasing, installing and opcrating the security devices and
screening passengers. Security level L; is defined as the conditional probability of detccting a threat item by
security class j given that a passenger is carrying a threat item. This probability, known as the frue alarm rate,
is a function of the detection probabilitics associated with the devices and the procedurcs used to screen
passengers in security class .

The asscssed threat values quantify the risk associated with cach passenger. The assessed threat value of a
passenger can be defined as the probability that the passenger is carrying a threat item. The realized assessed
threat values are based on information that passengers provide, cither implicitly or explicitly, which i1s
processed (in real-time) through an automated system such as Sceurc Flight. Assume that the assessed threat
values for each passenger are independent, and that the realized assessed threat values are accurate
representations of passengers' true level of risk.

Assume that each passenger is carrying either zero or one threat item. Then, for a given sct of passengers,
the expected number of threat items detected is the sum (over the set of passengers) of the products of each
passenger's rcalized assessed threat value and the sccurity level of the respective security class to which the
passenger is assigned; let this sum be the objective function G(a,v.af) in the second stage in (1). Then the
second stage can be modeled as an instance of the sequential stochastic assignment problem [9]. By
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definition, for a given passenger assessed threat distribution, the expected number of threat items that enter
the sccurity area is X~ v E(AT).

For a set of sccurity levels of available security classes [ 1< {Lj}Xj and a realized assessed threat vector at,
define the stochastic sequential assignment function G = fss(I1;es {Lj}X ar) as a linear function that returns

the expected number of threat items dctccted when an optimal, sequential assignment policy is followed in the
second stage. Then, the SSSDP is formulated as

max E r(fss (Tyes (LY . Par)) (42)
subjectto X, X;=N

}:jeJ Idj/\,j < Yucd, deD

Siep MY ;< B

}:deD S,/Yd <S

XjeZ Y,el,jel deD

In (4.2), the cxpected number of threat itcms detected is maximized when assigning the N passengers to
security classes. This value is given by the optimal passenger assignment policy as a function of the security
classes and underlying probability mass function of thc assessed threat vector. A solution to (4.2) determines
the number of passengers to be screened by each security class, and assigns each passenger individually to a
security class upon check-in. The first constraint ensures that all passengers are screencd. The second set of
constraints ensures that a sufficient number of devices of each type are purchased to assign all N passengers.
The third and fourth constraints ensure that the annual costs and space requircd to purchase, install, and
operate the security devices do not exceed the available budget and space, respcctively. Note that solving the
second stagc in (4.1) reduces to maximizing the value expressed by G= fsss (I;es {L; Y at). The optimal
solution to the second stage of SSSDP is given in terms of a policy (see Derman et al. 1972). Theorem 4.1
formally describes how the optimal passenger assignment policy is implemented.

Theorem 4.1. (Derman et al. 1972): For each n > 1, there exist rcal numbers 0 <y, <t , <, < ... <, = ]
such that whenever there are n passcngers to assign to security classes with security levels Ly <L, < ... <L,
then the next passenger to check-in is optimally assigned to class / if the realized assessed threat value at, is
contained in the interval (7., ,1;,]. Furthermore, 1,,, i=1,2,...,n-1, is the expected value, whenever there are (n-
1) passengers to assign, of thc quantity which is assigned to the i least securc class (assuming an optimal
policy is followed).

To determine the optimal assignment for the N passengers arriving sequentially at an airport security
checkpoint, Theorem 4.1 must be applied (sequentially, in reverse) N times. for n=N,N — 1,...,1. In particular,
suppose that there are n passengers scheduled to arrive, and hence, need to be assigned to security classes,
with the # security classes available indexed in order of incrcasing security levels. When a passenger arrives
to the airport security chcckpoint and checks-in, their realized assessed threat value is dctermined by a
prescreening system. The decision to assign this passenger to one of the available sccurity classes is made at
this time (with the assessed threat values of the remaining n-1 passengers treated as i.i.d. random variables).
Theorem 4.1 states that the interval (0,1] can be divided into » subintervals (#.1,. 2.}, i=1.2,....n, such that
each passenger's security class assignment is determined by the subinterval that contains the passenger's
realized assessed threat valuc (i.e., if this value is contained in the interval (7, ,, 1], then the passenger is
assigned to security class /.) Once such an assignment is madc, this security class is no longcr available, the
number of passengers to arTive is decremented by one, and Theorem 4.1 is reapplied to determine the security
class assignment for the next passenger to arrive and check-in, with the endpoints of the subintervals (7.,
tin). i =12,...,n recomputed (sec Lemma 4.1 for the method by which thesc values are detcrmined).

Given a set of security levels [1;, {L,-}Xi , the maximum objective function value in (2) is achieved when the
passenger with the smallest realized asscssed threat value is assigned to the Icast sccure class, the passenger
with the second smallest realized assessed threat value is assigned to the second least secure class, and so on
(for a proof of this result. see Hardy et al. 1952). Let k;, i=1,2,...,N. be the i" smallest number of threat items
expected in the passenger set (sec Lemma 4.1). Then, SSSDP is formulated as an intcger program with binary
assignmcent variables, defined as 4; = 1(0) if passenger i is (not) assigned to security class j forj € J, i =
1,2,...,N. The objective is to maximize the expected number of threat items dctected. which is represented by

the sum of the products of the security levels and k; i = 1,2.....N. With the added notations, (4.2) is
transformed into

max Zij-;2 v (}:jeJ L; Ay k) (4.3)
subjectto  X;g A;=1,=1.2,....N

Xji-Zic12..n4;=0,jeJ

}:_,5_1 Id/)‘; < Yuc,,, deD

Yoo MY, < B
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In (4.3). the constraints in (4.2) are reformulated under the added notation. The first set of constraints
ensures that each passenger is screened exactly once. The sccond set of constraints ensures that the number of
passengers screened by class j € Jis cqual to .-, v 4;,j € J. The remaining constraints are the same as
the constraints in (4.2).

Lemma 4.1 shows how #,, ti. 2.0 tom n = 1.2,....N, and coefficients &;, i = 1,2,...,N can be computcd.
In particular, it uses the probability distribution for the passengcr assesscd threat values to compute the
intervals that determine which security class a passenger is assigned to when they check-in, based on their
particular realized assessed threat valuc.

Lemma 4.1. (Derman et al. 1972): Let Fr (z) denote the cumulative distribution function of the assessed
threat value for passenger i=12.....N. Define 1,,, =0, t,., =1 for n=0,1,...:N. Then

L = ti-tn ZAF 47 (2) + iy pFar (G, )+ -F 47 (1)) for n=0,1,....N and i=1,2,.. . n.
The expectation of the assesscd threat value, which is to be assigned to the i least sccure class, is given by

ki =tinn, i=1,2,....N. Using these values, SSSDP is modeled as an integer program (4.3). SSSDP is now
formally stated using this notation.

Stochastic Security System Design Problem (SSDDP).

INSTANCE: Positive integers N, S and B; finite set D, for cachd e DM,;e 7', c;e Z" and s, Z'; a finitc
family J of subsets of D, for each je J L; € R"; for each i=12,...,N. a positive real number .

QUESTION: Is there an assignment of binary variables 4, , i=1,2,....N, je J, and a non-negative integer Y,
de D, such that .-, v Z;c/ L;j A ki is maximized and Z ;. 4; =1, i=1.2,...N, Z;o;> v Zies Ly Ay < Ycu
dED. stD M{Yd <B, stDded <§?

Nikolacv et al. (2007) prove SSSDP to be NP-hard using a polynomial Turing reduction from the integer
knapsack problem. Nikolaev et al. (2007) also providc an example to illustrate how SSDDP can be applicd to
actual aviation security systems, using data extracted from the Official Airlinc Guide (OAG) for domestic
flights of a single airline carrier at the terminal of a hub airport in the United States. The data provided by the
OAG include the set of flights, the number of available seats on each flight, and the departurc timc of each
flight. Note that the aviation security data available in the public domain are of limited quality. Passenger
classification is considered security-sensitive information. Moreover, performance characteristics of the latest
security devices are classified information. Lastly, political forces on the aviation security community make
thcm reactive to ongoing threat events. Given all these constraints, an effort is nceded to find solutions to new
threats and problems before they surface. These limitations do not reduce thc valuc of aviation security
research, but, rather, enhance it. since optimization models can be tested using new, better quality data as they
become available. In cssence, as data quality improves, model sophistication will become more critical and of
greatcr intcrest to the TSA and other aviation security stakcholders.

In conclusion, passenger and carry-on baggage screening is a critical component of any aviation security
system opcration, and an important national homeland security concern. There are scveral possible futurc
research directions. First, taking passenger convenience issues into account would add a new dimension to the
model and analysis. In particular, SSSDP docs not take into account the cxpected time passengers wait in
security lines. Introducing waiting times suggests another class of security design problems, which eould
incorporate elements of queucing theory. Second, minimizing the overall false alarm rate can be useful sincc
the majority of passengers are not threats and high false alarm rates are expensive to the airlines. However,
different passcnger assignment policies do not significantly impact false alarms (since false alarms need to be
resolved just as frequently for low-risk passengers as for high-risk passengers), and, hence, the false alarm
problem can itsclf be formulated only for security devices, without regard for passenger assignment.
Moreover, morc accurate security dcvice data would be required to effectively use such modcls. Third, an
extcnsion to SSSDP can be considered where each passenger's asscssed threat value dynamically changes as a
result of each subsequent scrcening by a security device. Such multi-level dynamic assignment problems are
of particular interest to the TSA (Kahn and Robinson 2006). Work is in progress to design algorithms and
heuristics for all these model extensions.

5. Sequential Stochastic Passenger Screening Problems

Integer programming and discrete optimization models havc been used to formulate several aviation security
problems when a passenger prescreening system is used. As previously discussed, Jacobson et al. (2001)
provide a framework for measuring the effcctiveness of baggage screening security device deployments for
screcning selectee baggage at a particular airport station. Jacobson et al. (2003) introduce three performance
measures for baggagc screcning security systems and introduce models to assess the sccurity cffect for single
or multiplc airport stations. Jacobson et al. (2005a) formulate problems that modcl multiple scts of flights
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originating from multiple airport stations subject to a finite amount of security resources; these problems
consider the three performancc measures introduced in Jacobson ct al. (2003). Examples are presented to
illustratc stratcgies that may provide more robust device allocations across all these performance measurcs.
Jacobson et al. (2005b) construct integer programming models for problems that consider multiple sets of
flights originating from multiple airports. Virta et al. (2002) considcr the impact of originating and
transferring passengers on the effcctiveness of baggage screening seeurity systems. Both thesc papers
consider classifying selectces into two types; those at their point of origin and those connecting through a hub
airport. This is noteworthy since at least two of the hijackers on September 11, 2001 wcre connecting
passengers. Babu et al. (2006) use linear programming models to investigate the benefit acquired from using
multiple risk groups for screening passengers. They conclude that using multiple risk groups is beneficial for
security, even when a prescreening systcm is not uscd to differentiate passenger risk. Nie et al. (2006) extend
this model to consider passenger risk levels, as determined by a passenger prescreening system, and formulate
the resulting model as a mixed integer program. They find that using passcnger risk levels results in a morc
efficient security system.

Optimal risk-based passcnger screening must operate in real-time and be dynamic, responding to changes
in passenger arrival rates and devicc utilization. McLay et al. (2009) introduces the Sequential Stochastic
Passenger Screening Problem (SSPSP) that modcls passenger screening strategies using Markov decision
processes and discrete optimization models. SSPSP assumes that passengers are classified as selectecs or
nonselectees based on the output of a prescreening system. SSPSP is motivated by McLay et al. (2006, 2007),
who introduce the Multilevel Allocation Problem (MAP) and the Multilevel Passenger Screening Problem
(MPSP). In these problems, multiple security classcs are available for screening passengers, which
generalizes the binary paradigm of Secure Flight. Moreover, the set of passengers to be screened at a
particular station in an airport in a given period of time is assumed to bc known, and hence, the assessed
threat values arc assumed to be known a priori. This assumption is relaxed by SSPSP. in which passengers
check in sequentially, and each passenger's asscssed threat value becomes known only upon check-in. This
necessitates a change in the solution methodology since all passenger screening decisions are made
simultaneously in MAP and MPSP, whereas passenger screening decisions are made sequentially for SSPSP.
MPSP is a static model that does not account for passenger check-in order, whereas SSPSP incorporates the
effect of passenger check-in order. Since passengers are classified as selectees or nonselectees upon check-in,
it is critical to understand the impact of passenger order on the ability of a screening system to systematically
identify high-risk passengers in real-time to focus more effective screening technologies on these passengers.
Note that this research assumes that a prescreening system such as CAPPS has been implemented and is
effective in identifying passenger risk (i.e., the assessed threat values accurately quantify passenger risk)
(Kahn 2006).

The primary contribution of this research is to identify a real-time methodology for screening passengcrs
(or in fact any objects that arc attempting to enter and harm a secure arca) under a binary screening paradigm
and to show how this methodology can be used to provide insights into the operation and performance of such
real-time systems. This research focuses on the theoretical issues surrounding this methodology in order to
understand its fundamental properties, and the results provide an optimal policy for screening passengers in
real-time. Providing strategics to screen passengers is critical in the design and development of next-
generation aviation security systems, given the political force being exertcd on the aviation security
eommunity to react to existing and new tcrrorist threats. ’

Efficiently and effectively screening passengers using a risk-based system is challenging. SSPSP models
a passenger screening problem when passcngers are classified as either selcctees (S: high risk) or nonsclectees
(NS: low risk). SSPSP 1s formulated as a stochastic optimization model and uses a Markov decision process
model to solve for its optimal policy.

Passengers and their baggage are screened by a sequence of devices, which is set in advance by the TSA
for both the selectec and nonselectec classes. Note that each device gives one of two possible responses: an
alarm or a clear, and hence, the system gives one of two possible outcomes: an alarm or a clear, which is a
function of the device outcomes and can be defined in several ways (see Kobza and Jacobson 1996, 1997 for
a discussion on how this can be done). Each passenger is either a threat or a nonthreat, where a threat is
defined as a passenger carrying a prohibited item (e.g., gun, knife) through a security checkpoint. Idcally, the
system yields a clear rcsponse for all nonthreat passengers and an alarm response for all threat passengers.
Although it is not known in advance whether a given passenger will yield an alarm response, it is assumed
that there are procedures in place for resolving alarms and that adequate resources are availablc to resolve all
alarms given by the system.

Several assumptions arc needed to define SSPSP. First, SSPSP assumes that passengers check in
sequentially, and that each passenger is assigned to a class upon check-in (i.e., before the next passenger

checks in). Note that the passengers may check in several hours before they arrivc at the airport. Therefore,
the time period when passengers are
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assigned to classes may be different than the time period when passengers arrive at the security area in an
airport terminal. In practiee, a prescreening system such as CAPPS determines which passengers are selectees
using information provided by passengers at the point of ticket purchase, and henee, assigning passengers to
classes when they check is eonsistent with existing TSA proeedures and practices (US GAO 2005).

The given time interval for sereening passengers can be divided into T stages, where during stage 1, a
passenger cheeks in with probability p, r = 1,2,....T, and henee, with probability 1-p, no passenger checks in
during stage . If the length of cach stage is sufficiently small, then it is reasonable to assume that at most one
passenger cheeks in during each stage. Stages are defined to rejeet the sequential way passengers eheek in.
The total number of stages T eaptures the time interval when passengers are screened, where a day is divided
into several such time intervals. Let 4(r) denote
the assessed threat value of passenger ¢ (a random variable), with value unknown until the passenger cheeks
in. The probability density function of the assessed threat values, fy(a), is identical for all passengers ¢ =
1.2.....T. The assessed threat value of passenger ¢ becomes known upon the passenger's arrival, taking on
value a(r), t = 1.2,....,T. Without loss of generality, define a(f) = 0 if no passenger arrives during stage 1.
Passenger 1 refers to the passenger that cheeks in during stage  or the dummy passenger with a(7) = 0, and
henee. SSPSP can be formulated as if T passengers always eheek in. The capacity of the nonselectee class is
defined as T; this ensures that there is sufficient capacity to classify all passengers as nonseleetees.

SSPSP is formulated as a stoehastie optimization problem, where the objective is to determine the optimal
policy for assigning passengers to elasses as they eheek in. A poliey n defincs a rule for assigning cach
passenger to a elass, which may change after cach passenger assignment is made and the state (i.e., the
remaining capacity in the selectec class). A policy may be deterministic (i.e., the policy always assigns a
passenger to the same class given the identical time and state) or random (i.e., the policy may assign a
passenger to different classes given an identical time and state). 1t may also be Markovian (i.c., the poliey
only depends on the current passenger and current state) or history-dependent (i.c., the policy depends on the
passenger assignments of the previous passengers). The optimal policy maximizes the expected security
subject to assignment and eapacity constraints. Security can be defined to capture scveral eriteria, and henee,
the objeetive is defined in a flexible way to potentially address a number of objeetives.

SSPSP classifies passengers as either seleetees or nonselectees. A passenger assignment refers to the class to
whieh a passenger is assigned. SSPSP is formally stated as a diserctc optimization problem.

The Sequential Stochastic Passenger Screening Problem (SSPSP)
Instance:
T stages,
p. the probability that a passenger checks-in during stage r=1,2....,T,
f+(a), a probability density function that describes the distribution of the passengers' assessed threat
values,
0<axl,
c. the capacity of the selectce class over the entire time interval, (the capacity of the nonselectee class
1s assumed to be 7,
LS, and LNS, the security levels assoeiated with the selectee and nonseleetee classes.
Variables:
A(1), the assessed threat value of passenger 1,
x4(#), passenger r assignment as either a selectce (xs(r) = 1) or a nonselectee (x(r) = 0).
Objective: Find the policy 7 that determines passenger assignments x"(1), x"s(2), ..., x"(T) such that the
number of passengers classified as seleetecs is within capacity (i.e.. ;2. 7 X"s(f) < ¢) and the expeeted total
security is maximized, z = supren (E[Zw12....7 LsA(NXS(0) + Ze 2, r LasA(D(1-x"S(1)]).

The realized assessed threat values are determined by a prescreening system such as CAPPS. The details
of CAPPS are classified, and the assumptions of how prescreening systems operate arc based on information
disseminated in the publie domain (US GAO 2005). It is also assumed that each realized assessed threat value
is determined independently and in real-time, since the presercening system is an cxpert system that outputs
the detcrministic, rcalized assessed threat valucs based on information that passengers provide at the point of
ticket purchase.

The sceurity levels ean be obtained using information and data available from the TSA. The seeurity level
of caeh elass (sealed between zero and one) is based on the seeurity procedures of each deviee used to sereen
passengers. Seeurity ean be defined in several ways. In this research, the sccurity levels of the seleetee and
nonselectec classes are measured as the conditional true alarm probability, the conditional probability that a
passcnger with a thrcat item is deteeted given that they are classified as sclectees or nonselectees,
respeetively. If each assessed threat value is defined as the eonditional probability that a passenger earries a
threat item. then the resulting expeected seeurity maximizes the number of true alarms deteeted by the system.
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This objective function is identical to minimizing the expected number of false clears. For simplieity, it is
assumed that a passenger carries at most one threat item. Security sereening deviees are designed to detect
one elass of threat items; for example, metal deteetors are designed to deteet guns and knives, while EDSs and
ETDs are designed to deteet explosives and bombs. Each deviee is not equally proficient at detecting each
type of threat item; however, the formulation is realistic if the parameters are defined to restriet the seareh to
one class of threat item (c.g., explosives).

Security devices may require significant amounts of space in airport lobbies or terminals. SSPSP does not
explicitly incorporate space requirements of sereening devices. Secondary sereening is performed for
passengers who rceeive an alarm response. A eertain number of alarms will oeeur, given the eapaeity of the
selectee class, and it is assumed that the neeessary seeurity devices are available for resolving these alarms.
However, since it is assumed that the capacity of the selectee class is bascd on the necessary number of
sereening devices allowed by the physical space available, then space requirements are implieitly captured by
SSPSP.

There havc been limited researeh efforts that foeus on real-time, risk-based passenger sereening strategies
given a presereening system such as CAPPS. SSPSP has similarities to three other types of passenger
sereening methodologies. First, SSPSP is a particular case of the Sequential Stochastie Multilevel Passenger
Screening Problem (SSMPSP) (McLay 2006), which generalizes the binary paradigm of CAPPS to consider
multiple classes for sereening passengers. SSMPSP is NP-hard, and as a result, there are additional challenges
in its implementation that do not apply to SSPSP. Therefore, although the more general results for SSMPSP
also apply to SSPSP, the results considered in this research provide more praetical, tailored recommendations
for a binary sereening system (i.e., sclcctee and nonseleetee passenger elassification). Moreover, the analysis
of SSPSP provides insights that may be of practical value, since the TSA has repeatedly embraced the binary
CAPPS sereening paradigm since September 11, 2001. Lee ct al. (2009) applies control theory to SSMPSP to
optimally sereen passengers, and hence, uses different methodologies to obtain different insights into a similar
passenger sereening problem.

SSPSP is similar to the second stage of a stochastie two-stage model (Nikolaev et al. 2007). The two-
stage model uses diserete optimization to determine which security deviees to purchase and install as well as a
passenger sereening strategy that maximizes deviee utilization. Although there is overlap between SSPSP and
the two-stage model presented by Nikolaev et al. (2007), the two-stage model provides insight into issues of
long-term deviece alloeation rather than the more immediate issue of how to optimally screen passengers in
real-time. Moreover, the analysis in Nikolaev et al. (2007) focuses on the aggregate level, such as analyzing
expected system pcrformance, as opposed to focusing on implications of individual passenger screening
deeisions (see Sections 4 and 5).

Since SSPSP has a sequential structure and makes sereening deeisions based only on the current state of
the system, it is natural to formulate SSPSP as a Markov deeision process (MDP). This MDP formulation also
illustrates how the optimal poliey is found. SSPSP can be formulated as an MDP with T +1 stages, with the
state in stage ¢ = 1,2,...,T deseribing the system before the first s passengers have been assigned to elasses,
where stage 1 corresponds to the initial stage, with stage 7+ 1 giving the final state after all passengers have
bcen assigned to classes.

Lct S denote the set of states. Let state s(f) € S represent the remaining capacity in the selectee class
before passenger r = 1,2,...,T has been assigned to a class. The initial state corresponds to the initial capacity,
$(1) = ¢, and denotes the state in stage ¢ as the remaining capacity of the selectee class, ¢ . Therefore, |S|=c¢
shmls.

For passenger 1, there are two aetions available: classify thc passenger as a selectee, if there is available
capacity, or classify the passenger as a nonseleetee. Given state s(f) = ¢, if ¢ > 0, then the next passenger
may bc classified as either a selectee or nonseleetee, and if ¢ = 0, then the next passenger must be elassified
as a nonselectee, r=1,2,....7T, for all s(#) € S. The transition probabilities, which determine state s(z + 1) given
state s(#) and the passenger assignment, are defined as p(s(r + 1) | s(2). xs(f)) = 1 if s(z + 1) = s(2) - x(2), 0
otherwise, forr=1,2,...,T.

The objeetive function value of SSPSP is determined by aceruing a reward after each stage in thc MDP.
Define the reward for classifying passenger 7 as a selectee or nonseleetee given state s(f) € S, t=1.2,....T, as

(s(,4(0)xs(1) = LsA(xs(1) + LusA(#)(1 - x5(1))

t=1,2,...,T. Given that passenger ¢ has realized assessed threat value a(r), then the reward for eclassifying
passenger ! as a selectee (nonseleetec) becomes Lso(f) after passenger  checks in, and Lysa(f) otherwise.
Note that if no passenger arrives during stage 7, and henee, a(r) = 0, then the reward is zero.

The expected total security for SSPSP is determined by policy 7, which deseribes the deeision rule for
selecting an aetion (i.€., the elass to which each passenger is assigned) in each state and at each stage. Let S(r)
denote the random variable eorresponding to the state before passenger  has been assigned to a class, and let
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X"(S(1)) denote the random variable corresponding to the class to which passenger 7 is assigned given policy
n. Given that the system is initialized in state s(1). then the expccted total sccurity for SSPSP is defined as

E(s(1)) = E"[Zer2...r HS(OADXA(SON | S(1) = s(1)]

where 1(S(1),4(2), X'(S(1))) is the random variable corresponding to the security obtained in time period ¢ in
statc S(r) with decision variables X"(5(¢)) based on policy . The objcctive of SSPSP is to find the optimal
policy n* such that F (s(lpy= sup E"(s(1) | 7).

Dcfine the value function in stage ¢ = 1,2,...,T as the optimal expected total sccurity for assigning
passenger  and the remaining 7-f passcengers to classes if s(r) > 0,

V{s()) = max «n e 1011 {E[r(s(2).A(0)xs(1)) + Vier(s(1) - xs(0))]}
for r=1,2,...,T, wherc for SSPSP,

Vi(s(0)) = maX e 10.1) {E[LsAMNXA) + LasA()(1-x(0)) + Vi (s(1) - xs(1)]}

for r=12.....T, with boundary conditions (that are also known as thc optimality equations)
Vres(0) =0, 5(1) € S

Passenger ¢ is classificd as a sclectec if
Lsa(t) + Vial(s(r) - 1) 2 Lysa(t) + Viei(s(8))-

McLay ct al. (2009) show that the optimal policy n*, which solves thc optimality equations, can be found
using dynamic programming. The total sccurity of a SSPSP instance, given realized assessed threat values

....... r () (Lsxs(t) + Lys (1-x(1)). The
optimal expected total security is captured by Fi(s(1)).

Intcgration is performed when computing the valuc functions defined above, since thc value function is an
expected valuc. Let O(f) denote the time complexity requircd to perform integration at cach stage in the
recursion. Note that this time complexity is O(1) if there is a closed form expression for the integrand, and
that, in general, 7 dcpends on the number of grid points if numerical integration is uscd. If the probability
density function is discrete, and each assesscd threat value may takc on one of W values, then /= W. Note that
since ¢ is bounded by 7. then the optimal policy can be determined in O(7%/) timc and O(T*) space.

McLay et al. (2009) rcport several structural properties of SSPSP. In addition, MDP formulation arc
derived and the relationship between SSPSP and the Dynamic and Stochastic Knapsack Problem (DSKP) and
the Sequential Stochastic Assignment Problem (SSA) are made explicit. First, it is notcd that the optimal
policy is deterministic and Markovian. DSKP and SSA are then used to illustrate the rcmaining structural
propertics for SSPSP.

Theorem 5.1: This optimal policy for SSPSP is deterministic and Markovian.
Proof: Follows from thc number of statcs being finite (see Puterman 1994).

McLay ct al. (2009) show that SSPSP can be formulated as a particular casc of DSKP (Papastavrou ct al.
1996). In the general instance of DSKP, there is a knapsack with capacity c. There is a time intcrval with 7 +
1 stages, with the probability p of an item arriving in any of the first T stagcs, and a probability of 1-p of no
item arriving. Each arriving item has weight W and profit R, which becomc known upon the itcm's arrival.
Both W and R are independently and identically distributed random variables, and thcy follow probability
dcnsity functions that are known in advance. 1f an item arrives, then one of two actions must be taken: either
the item is accepted (i.c., placcd in the knapsack) or rcjected. The objective is to maximize the expected total
reward accumulated over thc T + 1 stages while remaining capacity feasible. Let EV,F dcnote thc optimal
expected reward accumulated from (and including) time pcriod ¢ until time period T +1 with remaining
capacity ¢ .¢=1.2.....T+1, € = 0,1,....c. The optimal cxpected reward ovcr all stages is given by EV[ .

McLay et al. (2009) show that SSPSP is equivalent to the particular casc of DSKP when all of the item
types have equal weights, with w = 1 for all arriving item types. In this case, the knapsack capacity is
analogous to the capacity of the sclcctee class and cach item's reward is analogous to the assessed threat
values, scaled by the diffcrence between the security levels of the selectec and nonselectee classes, R = A(f)(Ls
- Lys). ltems in the knapsack correspond to passengers classified as sclectees. Rejected items correspond to
passengers classified as nonselectees. Solving SSPSP by formulating it as a DSKP instance finds the optimal
expccted additional security acquired from classifying passengers as sclectees, compared to classifying all
passengers as nonselcctecs.

The optimal policy for DSKP is a threshold policy, in which arriving itcms whose weight and valuc arc
above (below) a threshold valuc are accepted (rcjected). Define the expected reward from stage ¢ + 1 until

stage T+ | with remaining capacity C as EVS, in the DSKP formulation, which corresponds to ¥,.i(% ) in
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the SSPSP formulation. The optimal policy determines a threshold value for each stage and for each
remaining capacity,

R1(-' = EV(- El"F_! :

+) 1+1

with R° dcnoting the critical reward. The optimal policy for the particular case of DSKP n*(z, € .r) is
ACCEPT (REJECT) if r2 (<) R” .

Proposition 5.1 (McLay et al. 2009): The optimal policy for SSPSP defines a critical assessed threat value
H{(C ) at each stage t and in each state s(t) = C, with a passenger whose realized assessed threat value is
greater than or equal to this threshold classified as a selectee.

Theorem 5.2 summarizes several results from Papastavrou et al. (1996) applied to SSPSP. Proposition 5.2
provides two results for SSPSP that can also be applied to the particular case of DSKP with cqual weights.

Theorem 5.2 (McLay et al. 2009): The following results are valid for SSPSP:
1. V(<) is a concave nondecreasing functionof . 1= 1,2....,T.

2. VT ) is a concave nonincreasing function of t, © =0,1,...,c.

3. H(<) is nonincreasing with ¢ , t=12.....T.

4. H(T ) is nonincreasing with t, c=0,1,...,c.

Proposition 5.2 (McLay et al. 2009): The following results are valid for SSPSP:
1. V(7<) is a concave nondecreasing function of p, © =0,1,....c, t=12,....T.
2. H(< ) is nondecreasing withp, ¢ =0,1,....c, t=12....,T.

Theorem 5.2 and Proposition.5.2 have several implications for optimal passenger screening. First, the policy
bccomes more stringent at the end of the time interval, as shown by the critical asscssed threat value that is
nonincreasing with time, allowing passcngers with lower assessed threat values to bc classificd as selectees.
Passengers with lower assessed threat values are more likely to be classified as selectees at the end of the time
interval than at the beginning, given that the remaining capacity is the same. Second, the concavity of the
expected security with respect to capacity implies that having extra capacity in the selcctee class is more
beneficial when the rcmaining capacity is lower. In addition, the expected security increases when more
passengers are expected to arrive, which is intuitive since more threats are likely to be detected when more
passengers are scrcened. The concavity of the expected security with respect to p implies that increasing p is
more beneficial when p is small. The monotonicity of the critical assesscd thrcat valuc with respeet to p
implies that any given passenger is less likely to be classified as a selectee when more passengers are
expected to arrive during future stages. The concavity of the critical assesscd threat value implies that
increasing p when p is large has a morc conservative effect on the policy than when p is small. Note that
whether a high-risk passenger is classified as a sclectee depends on the time that the passenger checks-in and
how many passengers have already bcen identified. In practice, the capacity can be exceeded in order to
classify a small number of extra passengers as selectees; the hybrid model presented in Scction 5 addresses
this point.

McLay et al. (2009) show that SSPSP can be formulated as a particular case of the Generalized SSA
(Derman et al. 1972). In SSA, there are » available people for » jobs, with the values of the people given by
Vi, V2, ..., V,, Which are treated as known constants. The » jobs arrive sequentially, with the values of the jobs
being indcpendently and identically distributed random variables X;, Xz, .... X, with cumulative distribution
function F(X). Therefore, there are » sequential stages in SSA, where in stage ¢, a job arrives and its value x,
becomes known, r=1,2,....n. The job is matched to a person who has not yet becn assigned to an arriving job.
Therefore, job ¢ is assigned to person i, £ = 1,2,...,n. The objective is to maximizc the expected total reward,
given by the expcctation of sum of the products of the values of the job and thc person to whom it is matched,
E[212.. n Xvi]. Derman et al. (1972) provide the optimal policy for SSA.

GSSA generalizes SSA to consider the number of jobs being different than the number of people. 1If the
numbecr of jobs i is less than the number of people », then the m people with the highest values are assigned
to a job. If m 2> n, then m- n pseudo-people are created with value zero. If the probability that a job arrives at
each stage is less than one, then the optimal policy can be trivially modified by modeling the event that a job
does not arrive as a job arriving with value zero, which can be obtained by modifying F(X). This
generalization of SSA to consider a random number of jobs arriving is referred to as the Generalized SSA
(GSSA).

McLay et al. (2009) formulates SSPSP as a particular case of GSSA by first creating a sct of T pcople,
with ¢ people having value Lg - Lys (corresponding to the spaces available in the selectee class) and 7 - ¢
people having value zero (corresponding to the spaces available in the nonsclectee class). The job arriving at
each stage has value zero with probability 1-p, corresponding to no onc arriving for check-in during stage ¢.
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With probability p, a job arrives, whose value follows the cumulative density funetion F(X). The objectivc
function is to maximize the expected additional security from elassifying passengers as sclcetees.

Derman et al. (1972) provide an optimal poliey for SSA using dynamic programming. In their approach.
in stage 7. T - t + 2 breakpoints arc creatcd using the probability density function of the jobs,

-0=ag,<a;; <. Sare, =@ 5
where
(".-"..
ary = _‘- y dF(}’) +a, i Flar )t are (1 - Flaem).

t=12,....,T-1,¢"=1.2,....,T - t + 1, are computed in advancc for all T stages, requiring O(T*/) timc and O(T*)
space (reeall that O(/) is the time eomplexity required to perform integration). When a job arrives during stage
1, its realized value x, falls into one of T - 7 + | intervals, with each interval eorresponding to one of the
remaining available people. Job 7 is assigned to thc person with the i smallest value who has not been
assigned a job such that a;, < x,< a,«,. The policy executes in (T log T) time, after the breakpoints, a,,, are
computcd. Note that thc optimal policy depends on the distribution of the job values, not the valucs of the
available pcople.

MeLay et al. (2009) show that thc optimal policy can be generalized for GSSA by redefining the
cumulative density function to take into account the probability of a job not arriving,

Foss4(X) = (1 - p) + pF(X).

The optimal poliey for GSSA is identical to that of SSA, with Fss4(X) replacing F(X) in the expression for
a,,. Note that the DSKP and GSSA policies are identieal, with

ar..C w1 (Ls-Lns) = EVS - EVS = R,
r-1=12....,T, 7 = 1.2,....c. McLay et al. (2009) also provide the optimal policy for a more gencral case of

GSSA, where the random variables X, X, ..., X, are not required to be identically distributed.
The breakpoints for GSSA defined by a,,. providc the eritical assessed threat valucs for SSPSP, with

HI(? ) =are.c¢ e

Sinee the assessed threat values are between zero and one, then a;;, = 0 and a7y, = 1, 1 = 12.....T.
Proposition 5.3 shows that the optimal way to assign passengers is to classify thc highest-risk passengers as
selectees. Proposition 5.4 indieates that thc optimal poliey is insensitive to the security levels.

Proposition 5.3 (MeLay ct al. 2009): If the passengers and their assessed threat values are known a priori,
then the optimal policy is to classify the ¢ passengers with the highest realized assessed threat values as
selectees and the remaining passengers as nonselectees.

Proposition 5.4 (McLay et al. 2009): The optimal policy for SSPSP does not depend on the security levels, L
and Lvs.

MeLay et al. (2009) provide an illustrative example for SSPSP. In this examplc, a total of 7= 2000 stages
are considcred, with the probability that a passenger echeeks-in during each stage given by p = 0.5, resulting in
1000 passengers expeeted to eheek-in during the time interval. The assessed threat valucs are assumed to
follow a truneated cxponential distribution with parameter 1/16. The security level of the seleetee and
nonseleetee classes are Lg = 0.9 and Lys = 0.7. However, Proposition 5.4 indicates that thc optimal policy
does not depend on the seeurity levels, and hence, the insights obtained from the analysis are applicable
regardless of the real-world seeurity levels. Resolving alarms by sccondary sereening is not cxplicitly
considered; rather, it is assumed that the eapacity of the selectee elass is determined by factoring in the
expeeted number of rcsources necded to resolve false alarms.

Figures 1-3 in MeLay et al. (2009) illustrate the valuc funetion and eritical assessed threat value
thresholds that reflect the monotonieity and concavity results in Thcorem 5.2 and Proposition 5.2, using a
remaining eapaeity of 10 for illustration purposcs. For simplieity, they refleet the expeeted additional seeurity

using thc knapsaek formulation notation ( £ V). Note that these figurcs do not illustrate how the optimal

poliey operates in praetice (i.e., how the critieal assessed threat value actually changes as passengcrs cheek in)
since Figure 1 illustratcs the poliey when the remaining eapaeity and p arc fixed, Figure 2 illustrates the
optimal policy when the stage and p are fixed, and Figure 3 illustrates the optimal policy when the remaining
eapaeity and the stage are fixed.

The optimal poliey was eomputed using Matlab on a Pentium D 3.2 GHz processor with 3.5 GB of RAM.
The capacity of the sclectce class considered was ¢ = 50, 100, 200 passengers, whieh 1s eonsistent with the
observation that most passengers are elassified as nonselectees (Bamett 2001). A total of 100 replieations
were executed for cach capacity level. The optimal value funetions were computed in advancc and were used
by all 100 replieations. In each replication, a set of passenger arrivals was simulated, and the optimal policy
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was applied to determine how to screen the passengers as they checkcd-in. The average objective function
values were 46.5, 47.7, and 50.1, for ¢ = 50, 100, 200, respectively. These values are within a factor of 0.001
of the optimal screening strategy when all passcngers are assumed to be known a priori (see Proposition 5.3),
which indicates that the optimal policy is highly effective at classifying high-risk passengers as selectees.
These values are absolute cxpected total security values, and they can be compared to the expected additional
security values in Figure 2 by adding a constant factor of pTLysE(A(f)) = 43.75 to the values in Figure 2. Note
that the critical assessed threat values were relatively constant until the end of the timc interval. Figure 4 in
McLay ct al. (2009) illustrates the avcrage critical assesscd threat values as a function of passenger arrivals.
for ¢ = 50, 100, 200. When there was no remaining capacity in the selectee class, the critical assessed threat
value increased to one until stage T, which increases the average critical assessed threat value and forced any
additional passengers to be classified as nonselectecs. Figure 4 also illustrates the conditional distributions of
the assessed threat values of the passcngers who are classified as selectees and nonselectees as the optimal
SSPSP policy executed for a single replication. Note that the capacity ¢ decreased and the stagc ¢ increased
during each replication, whereas ¢ remained constant in Figure 1. 1t shows that there is very little overlap of
the assessed threat values of the passengers classified as selectees and the passengers classificd as
nonselcctees, and hence, the optimal policy was able to consistently identify high-risk passcngers.

Once there is no remaining capacity in the sclectee class, any additional passengers that check in arc
classified as nonselcctees. This provides a way for passengers to time their arrival at the airport in order to
receive less security scrutiny. This issue is compounded by the fact that the optimal SSPSP policy tends to
utilize nearly all of the capacity in the selectee class. The entire capacity of the selectce class was used in all
but 3, 6, and 11 of the 100 replications, for ¢ = 50, 100, 200, respectively. There was only exccss capacity
when no passengers arrived during the last several stages, and this cxcess remaining capacity never excceded
two passengers.

To analyze the possibility of passengers arriving at the end of a time interval to avoid being classified as
sclectces, suppose that there exists a stage ¢ (with 7 < T) at which a passcnger was classified as a selectee and
effcctively used the last selectee class spot. By design, all passengers checking in during stages ¢+ 1, 1 + 2,
..., T must be classified as nonselectces. For ¢ = 50, 18.1 passengers on average arrive after there is no
remaining selectee class capacity, while for ¢ = 200, this average drops to 3.4 passengers. Although several
passengers arriving at the end of the time interval could avoid being classified as selectees under the optimal
SSPSP policy, this affects only a small fraction of the passengers. Moreover. the time intervals can begin and
end at arbitrary times, so there is a level of unpredictability in knowing when a passenger can arrive to
maximize the likelihood of being classified as a nonselectee, which reduces the ability of terrorists to gamc
the system.

The effectiveness of the optimal SSPSP policy depends on accurately identifying and predicting the
assessed threat value distribution and the probability of a passenger arriving during each stage. To study the
sensitivity of the optimal SSPSP policy with respect to this distribution, a different asscssed threat value
distribution of the passengers arriving to check-in was considcred and compared to the assessed threat value
distribution used to compute the optimal policy. A truncated exponential distribution with parameter 1/16 was
used to generate thc optimal policy (i.e., the value functions and critical assessed threat values). The
passengers arriving for check-in followed truncated exponential distributions with parameters A = 0.005, 0.01,
..., 0.1. For each such value of A, 100 replications were executed. Figure 6 in McLay et al. (2009) shows the
average total security as a function of A scaled by the sum of the realized assessed threat values. The scaling
was performed sincc the cxpccted asscsscd threat value incrcases with A, and hence, the total number of
threats in the system increased with A. The optimal objective function value is maximized when A = 1/16.

To summarize, SSPSP providcs a real-time tool that could be used by the TSA to screen passengers, or
for any system where threat object must be detected to protect a secure area. The SSPSP policy has scveral
operational implications if implemented. First, note that the time interval considcred by SSPSP can bc defined
arbitrarily (e.g., one hour), with each stage corresponding to a small timc period (e.g.. 10 seconds). Thcrefore,
several time intervals would be needed to cover a day, and capacity changes betwcen the time intervals would
correspond to changes in security screening personnel staffing and device availability. Passenger arrival rates
are variable over the day, but are considered to bc constant within each time interval. This is reasonable since
the time intervals could be defined to capture shorter periods of time, with different arrival rates in different
time intervals. SSPSP treats each timc interval independently, but thcy are not entirely indepcndent in an
airport. For example, passengers alrcady waiting in security lines may havc been classified as selectees or
nonselectees during an earlier time interval than passcngers currently arriving at the cnd of security lines.
Independence is less of an issue if the capacity of the selectce class in one time intcrval depends on the length

of the security lines when the time interval begins (e.g., capacity of the selectee class in the next time interval
could be reduced if the security lines are long).
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Onc implication of SSPSP is that thc optimal policy docs not depend on the security levels, Lg and Lys.
That 1s, passengers would be classified thc same way if the security level of the selectec class is cither nearly
the same or much higher than the security level of the nonselectce class. SSPSP nearly always elassifies thrcat
passengers that a prescreening system like CAPPS identifies as high-risk as sclectees, but CAPPS incorrectly
labels somc threat passengers as low-risk. It has becn observed that even if a prescreening system such as
CAPPS is cffective at identifying thrcat passcngers, a large proportion of threat passengers may still bc
classified as nonselectecs, becausc the proportion of passengers classified as sclectees is small (Barnctt 2004,
Martonosi and Barnett 2006). Therefore, it may be of benefit to improve thc quality of the scrcening of
nonsclcctees rather than that of the selectecs (i.c., reducing Lg -Lys rather than increasing Lg - Lys).

The optimal SSPSP policy can also be modified to allow for all extremely high-risk passengcrs as
selectces, even when therc is no remaining capacity in the selectcc lass. In such a hybrid model, lct all
passengers with an assessed threat valuc larger than a prespecified threshold € be classified as sclectees,
which occurs with probability q = [/ 4(a)da, given that a passenger arrives. The objective of this hybrid
modecl is to maximize thc expected total security of the passengers who arc not automatically classificd as
selectees (i.c.. all passengers whose assessed threat values are less than 6). Then, the original optimality
equations and boundary conditions thcn become a function of 8 (see McLay et al. 2009 for details).

Therc are many eriticisms of binary passenger screening systems, as opposcd to screening all passengers
the samc way. In particular, it has been noted that terrorists could probe the system by sending a large number
of terrorists through the system prior to carrying out an attack to determine the conditions under which the
terrorists would be classified as nonselcctces, maximizing the probability of a successful attack (Chakrabarti
and Strauss 2002). It is conceivable that in the future, the TSA could abandon binary screening systems to
pursue a morc uniform screening strategy. However, the challenges and costs associated with deploying next-
generation passenger screening technologies at our nation's airports indicate that therc arc long periods of
time when there is not sufficient eapacity to screen all aviation passengers with new technologies. For
cxample, the 100% baggage screening mandate requires all checked baggage to bc screencd by EDSs and
explosive trace detection systems (ETDs). In the five years after this mcasure was enacted (November 19,
2001), over 1400 EDSs and 6600 ETDs were dcployed at the nation's commercial airports in ordcr to mect
this objective (US GAQO 2006). Alternative screcning methods such as hand searches and positive passenger
baggage matching wcre used to screen checked baggage for explosives until EDSs and ETDs becamc
available. Deploying new security screening technologies (temporarily) creates a binary passenger screening
systcm, even when the intention is to screen all passengers with the ncw technology. Thereforc, SSPSP
rcmains highly relevant cven if uniform scrcening methods are pursued, and its analysis can bc used to
address questions of how to optimally use limited resources in next-generation passengcr screcning systcms.

In conclusion, McLay et al. (2009) introduces SSPSP, which models stochastic passenger and baggage
screening systems. SSPSP, which considers passcngers arriving over timc, i1s formulated as a Markov
Decision Process, where the optimal policy can be eomputed by dynamic programming. The solution to
SSPSP provides a real-time passenger screening methodology, which suggests that SSA could be part of a
tool used by the TSA for screening passengers in real-time. In addition, the relationship betwcen SSPSP,
DSKP, and SSA is made explicit, illustrating several theoretical propcrties of the optimal policy.

An illustrative examplc was analyzed to study the optimal SSPSP policy. Analysis of the solutions
suggests that extremely high-risk passengers are almost certainly classified as selectces, rcgardless of when
these passengers check in. Critical asscsscd threat valucs were relatively constant over the timc intcrval. The
optimal policy was shown to be more sensitive to thc accuracy of the assesscd threat value distribution and
less sensitive to the probability of passengers checking-in during each stage. Several implications of
implementing such a policy are discussed. One implication is that the optimal policy does not depend on the
security levels, which implics that it may be of bencfit to improve the quality of the screening of nonselectees
rather than just selectees, which currently receive the most security attention and consideration.

The optimal policy for SSPSP is highly effcctive in classifying extremcly high-risk passengers as
selcctees. Exceptions occur at the very end of the time intervals and when thc asscssed threat value
distribution is inaccurate. The fact that a small number of high-risk passengers could be classified as
nonsclectees could be a potential weakness of SSPSP. However, in practice, extremely high-risk passengers
would not be classified as nonselectees, cven if thcre is no remaining capacity in thc sclectec class. For
security purposes, it is rcasonable to classify one extra passenger as a selcctee and have the security lines
move slightly slowcr, and the hybrid model as discussed in McLay et al. (2009) can be uscd to mitigate some
of this risk. Thcrefore, the possibility of terrorists gaming the system by timing their check-ins can be
circumvented.

SSPSP addresses the direct effects of passenger screening, such as detecting threat itcms, not the indirect
effccts of passenger screening, such as detcrrence. Although the implementation of SSPSP does not depend
on the sccurity levels, the amount of deterrence is likely to depend on the security Icvels, and in particular, L
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-Lys (Martonosi and Barnett 2006). One extension to this research is the development of modcls that capture
the indirect effects of the sccurity levels on system security.

There are several other possible directions to extend the research results prescnted. First, considering
screening costs can give insight into the design of cost-effective screening strategies. Second, understanding
how the optimal policy can be manipulated by terrorists wishing to be screened by less secure classes would
be of interest to the aviation security policy community. In particular, modeling how terrorists could take
advantage of how optimal policies opcrate in real-time as well as manipulating the passenger pool (e.g.,
flooding the airport with decoys) may provide the impetus for designing robust heuristics and algorithms.
Work is in progress to address all thcse extensions.

6. Statistical Tests to Empirically Compare Tabu Search Parameters

The application of stochastic heuristics, likc tabu search or simulated annealing, to address hard discretc
optimization problems has been an important advance for efficiently obtaining good solutions in a reasonable
amount of computing timc. A challenge when applying such heuristics is assessing when a particular set of
paramcter values yields better performance compared to other such sets of parameter values. For example, it
can be difficult to determine the optimal mix of memory types to incorporate into tabu search. This in turn
prompts users to undertake a trial and error phasc to determine the best combination of parameter settings for
thc problem undcr study. Moreover, for a given problem instance, one set of hcuristic parametcrs settings
may yield a better solution than another set of paramcters, for a given initial solution. Howecver, the
performancc of this heuristic on this instancc for a single heuristic execution is not sufficicnt to assert that the
first set of parameters settings will always produce superior rcsults than the second set of parameters, for all
initial solutions.

Jacobson and McLay (2009) look at three known statistical procedurcs (one of which is a basic statistical
test proccdurc and two of which were devcloped for discrete event simulation (discrete) optimization) to
assess and compare the computational performance of tabu scarch for MAX 3-SATISFIABILITY. The
statistical procedures designed for application within the domain of discrete event simulation output analysis
(a paired difference t-test and two multiple comparison procedures developed and studied by B.L. Ncison and
others) are adapted for this new purposc. An empirical case study is rcported by computationally studying
MAX 3-SATISFIABILITY instances across thirty-two variations of tabu search.

Discrete optimization problcms are defined by a finite set of solutions together with an objective function
value assigned to each solution (Garey and Johnson 1979). The goal when addressing such problems is to
find solutions that globally optimizc the objective function. Unless otherwise noted, assume that discrete
optimization problems are minimization problems.

Computational complexity theory provides a well-defined framework to assess the difficulty of these
problems. Garey and Johnson (1979) formally defines the classes P (Polynomial), NP (Non-deterministic
Polynomial) and NP-complete. Thc class P contains decision problems that can be solved in polynomial time
in the size of the problem. The class NP contains decision problems for which it can be checked in
polynomial timc (in the size of thc problem) whether a given potential solution solvcs the problem. The
hardest problems in the class NP are catcgorized as NP-complete. Thc seminal paper by Cook (1971) proves
the first decision problem, SATISFIABILITY, to be NP-complete. Over the past 30+ ycars, a significant
amount of research has been done in this area, with numerous problems proven to be NP-complete. Sece
Garey and Johnson (1979) for an in-dcpth discussion on the theory of NP-completeness, including an
extensive list of NP-complete problems.

Numerous heuristics have been devcloped to find near-optimal solutions to NP-complete problems using a
reasonable amount of computing time. General search strategies such as simulated annealing (Henderson et
al. 2003), genetic algorithms (Rceves 2003), tabu search (Glover and Laguna 1997), threshold accepting
(Dueck and Scheuer 1990) and the noising method (Charon and Hudry 2001), each use a distinct search rule
to intelligently exploit the solution space with the hope of finding optimal/near-optimal solutions. One
difficulty when applying such hcuristics is being able to assess when a sct of parameter values lead to good
performance. For example, it can be difficult to determine the optimal mix of mecmory types to incorporate
into tabu search. This in turn prompts users of such heuristics to undertake an initial trial and error phase to
determine the best combination of parameter settings for the problem under study. Howcver, given the
stochastic nature of such heuristics. it is not clear how the performance of a hcuristic using diffcrent
parameter settings can be compared in a systematic way. For examplc, for a given problem instance, one set
of heuristic parameters scttings may yield a better solution than another set of parameters, for a given initial
solution. However, the performance of this heuristic on this instance for a single heuristic execution is not
sufficient to asscrt that the first set of parameters settings will always produce superior results than the second
set of parameters, for all initial solutions. Adenso-Diaz and Laguna (2006) address this issue by crcating a
support tool to determine the optimal set of scarch parameters values for heuristics using Taguchi’s fractional
factorial cxperimental designs and local search procedures.
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This paper i1s a case study on three known statistical proeedures that ean be used to assess the
eomputational effeetiveness of stoehastie heuristies for hard diserete optimization problems. The
statistical proeedures includes paired differenee t-tests, single-stage and two-stage multiple
eomparisons proeedures. These proeedures are eomputationally illustrated on different variations of
tabu search applied to a set of MAX 3-SATISFIABILITY instanees. Although the results are
illustrated on one elass of NP-complete problems (namely, MAX 3-SATISFIABILITY) using one
heuristie (namely, tabu seareh), the statistiecal proeedures in this paper ean be applied to other hard
diserete optimization problems and heuristies to assess the performanee of sets of value parameters.
To deseribe SATISFIABILITY, several definitions are needed. A clause is a eombination of r

literals where a literal is a Boolean variable (x;) or its negation (X,). A solution, @, is a Boolean

veetor of size n, where each Boolean variable is assigned a value of one or zero. Given a solution, a
clause 1s satisfied if at least one literal in this elause takes on the value one. Using these definitions,
SATISFIABILITY ean now be deseribed: Given a eolleetion of m elauses, involving n Boolean
variables, is there a solution (i.e., values for the n Boolean vanables) that satisfies all m elauses?

Several variations of SATISFIABILITY have been studied, based on the number of literals assigned to each
clause. For example, if the number of literals is r for all clauses, then SATISFIABILITY is referred to as r-
SATISFIABILITY (e.g., 2-SATISFIABILITY. 3-SATISFIABILITY).

By definition, SATISFIABILITY is a deeision problem, since the solution yields cither a “yes™ or “no”
response (i.e., all m clauses can or cannot be satisfied). On the other hand, any SATISFIABILITY instance
can be formulated as an optimization problem (termed MAX SATISFIABILITY) by introducing the objective
function

Max g(@) = Zj-12...m C{w) or, equivalently Min flw) = Ziei 2. m (1-Cw)),
where C{w) = 1 (0) if clause j is (not) satisfied for solution @. SATISFIABILITY was the first problem
proven to be NP-Complete (Cook 1971). SATISFIABILITY is also fundamental for solving several real-
world problems, ranging from computer chip design to robotics (e.g., see Gu et al. 1996 for an extensive list
of application arcas). Such applications have been the driving force behind much of the rescarch done to
address the problem.

To describe the general framework for tabu search for discrete optimization problems, define £2 to be a
finite sct of feasible solutions (solution space). Define an objective funetion £ 2— Z” that maps clements of
the solution space into an n-tuple of integer values. Note that the range of this function is often just Z, the set
of integer scalars. Using these definitions, a discrete optimization problem can be represented as: Min,.q
Ao).

Tabu search (Glover and Laguna 1997) is a heuristic for addressing a wide varicty of intractable discrete
optimization problems, ranging from minimizing makespan in a flow shop problem, to planning and re-
planning in a project schedule problem (Garbowski and Pempera 2007, Calhoun et al. 2002). Hybrid
heuristics that use tabu lists have also been developed for machine
scheduling problems and hub location problems (Chen and Wu 2006, Chen 2007).

To describe tabu search, several definitions are needed. Define a neighborhood function, 17.€2 > 2, where
mw) c 2for all @ € 2. Define the tabu list TL < Q to be a set of elements identified as forbidden (tabu)
solutions. TL is initially empty, and subscquently updated by prespecified rules (tabu conditions) that use
historical information from the search. Define BEST to be an evaluator function that finds the best solution
among a set of neighboring solutions 7 w)\TL. Let @* denote the best solution found to date and define a
stopping condition which terminates the algorithm (e.g., a desired number of iterations has clapsed or all
neighboring solutions are tabu). Using these definitions and notations. pseudo-code for a generic tabu search
algorithm is presented (Glover and Laguna 1997).

I. Sclect an initial solution @ € £2
@* < o and sct the iteration eounter k=0 and TL = &
2. ke ktl
Select ax € M w)\TL such that &= BEST(m( @)\TL)
W @
If Aw) < f(@*), then &* « ©
3. If the stopping condition is met, then STOP and report w*.
Otherwise, update 7L and return to Step 2.
The tabu list is a memory-based structure that guides the scarch away from undesirable solutions (e.g.. local
optima or previously visited solutions) by defining a set of tabu solutions. Tabu search traverses the solution
space by selecting the best possible solution at each step, determined by the function BEST. Notc that the best
possible solution might not always yield an improvement in the objective funetion valuc. In such cases, tabu
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seareh allows the search to select an inferior solution (with a minimum deterioration in the objeetive funetion
value). The funetion BEST also gives tabu scareh an ability to use other methods (e.g., linear programming)
to make the search more flexible.

There are a wide range of tabu search strategics that have been developed, ineluding long-term memory, and
aspiration eriteria (see Glover and Laguna 1997 for a list of other strategies). 1n the tabu search framework,
TL is usually used as a short-term memory tool that forbids a solution to be visited over the next L iterations.
After L iterations have oeeurred, the same solution ean be repeated sinee its tabu status has been removed. It
is not desirable for an algorithm to revisit the same solution too frequently. To avoid such a situation, it may
be neeessary to ineorporate long-term memory into the algorithm, which uses frequcney information of
previously visited solutions and guides the seareh into unexplored regions of the solution spaee by avoiding
solutions that have already been visited a large number of times. In some cases. the simultaneous applieation
of short-term and long-term memories may result in the neighboring solutions becoming too restricted. To
eireumvent this problem, aspiration eriteria may be defined for overriding the tabu status of a solution (e.g., a
tabu solution produces a better solution than the best solution found to date, @*). The types of memory and
the tabu strategies used are all important faetors that affeet the performanee of tabu seareh. These faetors need
to be individually designed for each speeific problem.

Several definitions are needed to deseribe tabu seareh for MAX 3-SATISFIABILITY. Let n denote the
number of Boolean variables and m denote the number of clauses for a given instance of MAX 3-
SATISFIABILITY. Let 2 be the set of all possible (2") solutions (i.e., the solution space), where every
solution w € £2is represented as a binary veetor of size n. Define an objeetive funetion, f £2 — [0,m], such
that fw) =%-1 2. m (1-C{w)) denotes the number of unsatisfied elauses associated with solution w € £2. Note
that by minimizing the number of unsatisfied clauscs rather than maximizing the number of satisfied elauses,
the problem being addressed is MIN 3-UNSATISFIABILITY rather than MAX 3-SATISFIABILITY.
However, by design, there is a one-to-one mapping between the solutions of these two problems, and henee,
solving one problem equivalently solves the other problem.

Let ax € 2denote the current solution (at iteration k). A neighboring solution, ax(i) € 7(ax), is obtained by
flipping the value of the Boolean variable x(i) in @ (e.g., neighboring solution @(50) is obtained by changing
x(50) from 0(1) to 1(0) in @y). This switching proeedure (often referred to as 1-flip; see Yagiura and Ibaraki
2001) defines the neighboring funetion. There are exactly »n distinet neighboring solutions
{(1),(2),...,ax(n)} assoeiated with the eurrent solution @y. For tabu seareh, define the set 7{ ax)\T, to be
all candidate neighboring solutions (i.e., the set of all neighboring solutions that are not tabu). Define @y €
argmin{flax(i)), (i) &€ T, i = 1,2,....n} to be the solution with the smallest (best) objeetive function value
among all eandidate neighboring solutions obtained from ax.

Yagiura and lbaraki (2001) present an exeellent computational study with tabu search and other heuristies
applied to MAX SATISFIABILITY that eompares different r-flip neighborhoods, while Smyth et al. (2003)
deseribe an itcrated robust tabu seareh for MAX SATISFIABILITY. Gu (1993) desecribes general local
search algorithms for satisfiability problems. Sinee the foeus of this paper is not to identify optimal tabu
search algorithms for MAX SATISFIABILITY, but rather, to deseribe how statistieal proecedures can be used
to compare the effectiveness of different tabu search variations, commonly used tabu search variations are
considered here.

Three basic types of tabu search sirategies (short-term tabu list, long-term tabu list, aspiration eriteria) are
applied to MAX 3-SATISFIABILITY. A neighboring solution ax(i) is defined as tabu if the Boolean variable
x(i), which is to be switched in ax to obtain a(i). is either on the short-term tabu list. 7; or the long-term tabu
list, 77 To avoid exeessive memory requirements, both lists are defined as a set of Boolean variables rather
than a set of solutions. 1t should be noted that both the short-term and long-term tabu lists are dynamie and
therefore proper updating proecedures need to be defined. In partieular, at the end of iteration k, Boolean
variable xy..(#), whieh is switched to obtain ey, immediately enters the short-term tabu list and stays tabu
for the next L iterations (i.c., Xu.q(i) leaves the list at the end of iteration k + L). Note that any Boolean
variable x(/) may re-enter the short-term tabu list later in the algorithm’s execution. If a Boolean variable x(i)
enters the short-term tabu list more than F times, it is then ineluded on the long-term tabu list. Onee a
Boolean variable is included on the long-term tabu list, it stays tabu for the rest of the algorithm’s exeeution.

Two n-tuple vectors, u and v, store all the information required to verify the tabu status of the Boolean
variables. When a Boolean variable x(i) enters the short-term tabu list, u(i) reeords the eurrent iteration
eounter (i.e., u(/) = k) and v(i) records the number of times that the Boolean variable x(i) has beeome tabu
(i.e., V(i) = W(i) + 1). The same updating proeess is repeated at all iterations k£ = 1,2,...,K. These two veetors
makes it possible to check the tabu status of any Boolean variable x(i) with just two eomparisons (i.e., x(i) €
rifk<u(iy+ L and x(i) € I"if w(i) 2 F). As noted earlier, a neighboring solution ax(i) is said to be tabu if the
Boolean variable x(i) 1s tabu (1.e., x(i) € YU ). However if a tabu neighboring solution (i) produces a
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better solution than the best solution found to date (i.c., f{a(7)) < A &*)) then its tabu status is overridden: this
defines a simple aspiration eriterion for the algorithm.

Tabu search is 1nitialized with a randomly generated initial solution, @y (its source of randomness). and
empty tabu lists, ’and /7 A set of n neighboring solutions {@/(1).@,(2)....,@;(n)} arc obtained. where for
each such solution (i), (7)) is evaluated, its short-term and long-term tabu status (i.c., x(i) € YU 7) is
checked, and the solutions @* and ;e arc updated. Note that during the first itcration, no neighboring
solutions are tabu, since both tabu lists are initialized to be empty. Once the objective function value and tabu
status of all # neighboring solutions are obtained, the solution @;,n., becomes the current solution for the next
iteration, k = 2 (even if it is worse than the current solution @;) and the Boolean variable xi. (i) enters the
short-term tabu list. This process is repeated until X iterations have been executed, all neighboring solutions
have becomc tabu, or a solution satisfying all n clauses is found. The algorithm is then terminated and the
best solution found to date, @*, is reported. Tabu search for MAX 3-SATISFIABILITY is outlined in
pseudo-code form, wherc short-term tabu list, long-term tabu list, and a simple aspiration critcrion are applicd
as described in the Scetion 4.2.

Gencrate a random initial solution @; and cvaluate @)
Sct @* « o, Ao*) « (o)
Initialize the tabu lists, V'= @&, /"=, and set the iteration counter & = |
Repeat
Sct the Move Indicator MOVE = NO and set the Boolean variablc index i = |
Repeat
Obtain a ncighboring solution ex(7) € 7{ax) and evaluate flax(i))
If A ex(i)) = 0, then STOP and report @(7) (i.e., all m clauses are satisfied)
If A ax(i)) <A w*). then set MOVE = YES, a* « w(i) , f&*) < Rw(i)),
W best € wk(i)’ﬂ(uk.bcs() <—f(a);,(1))
Ifx(y e (Yo
1f MOVE = NO, then st MOVE = YES, thpeqt & @ (i) A vest) — A ar(i))
Ifﬂ ax(i)) < A @ vest), then @y pest Ki), Ay pest) < A xli))
e i+l
Untili=n
If MOVE = NO. then STOP and report @*, A «*) (i.c., all neighboring solutions arc tabu)
Set gy ¢ Opests AOit) — f Dkpest)
Update the tabu lists 7, /7~ and set k « k+1
Until k=K
Report o, A w*)
Three statistical procedures are applicd to compare and assess the performance of heuristics for hard discrete
optimization problems. The first procedure is a paired difference t-test. The scecond and third procedures are
single-stage and two-stage multiple comparisons procedures, respectively, adapted from discrete cvent
simulation optimization output analysis (Banks et al. 2001). Therc are several common links between
discrete optimization problem heuristics and discrete event simulation output analysis procedure. Jacobson
and Yucesan (1999) establish that the difficulty of several decision problems associated with discrete event
simulation modeling and analysis can be studied using computational complexity. They show that
accessibility of states. ordering of events, noninterchangeability of model implementations, and cxecution
stalling for discrete event simulation can be formulated as NP-hard search problems. Jacobson and Yucesan
(2002) also identify common issues betwcen the two areas. They define NEIGHBORHOOD, which secks a
sequence of cvents such that two distinet states can be accessed, onc state after executing all but the last event
and another state after executing all the events, and INITIALIZE, which secks a sequence of events such that
exccuting the sequence with one particular initial event results in a particular state being rcached, while for a
second initial event, that particular statc cannot be reached, and proves them to be NP-hard.

The three procedures are illustrated on thirty-two tabu scarch variations applicd to four instances of MAX
3-SATISFIABILITY taken from SATLIB (Hoos and Stiitzle 2000). Two of these instances (UF200-0100,
with 200 variables and 860 clauses, and UF225-0100, with 225 variables and 960 clauscs) are satisfiablc,
while two of the instances (UUF125-0100, with 125 variables and 538 clauses, and UUF175-0100, with 175
variables and 753 clauscs) are unsatisfiable (with the optimal solutions cach having onc unsatisficd clausc).

The tabu length, L, denotes the size of the short-term tabu list (i.e., L = | rl). The tabu frequency, F,
denotes the maximum number of times a Boolean variable can be inserted on the short-term tabu list. If a
Boolean variable attempts to cnter the short-term tabu list more than F times, then this Boolean variable is
included on the long-term tabu list, /, and stays tabu for the rest of the algorithm’s execution. As L is
inercased or F is decreased, candidate neighboring solutions (i.c., 7{®) \ (¥Y"'w 1)) bcecome more restricted,
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since the tabu lists will contain more Boolean variables. 1f the aspiration criterion. A, is used, then the
restriction on candidate neighboring solutions is relaxed, since the aspiration criterion overrides the tabu
status of a Boolean variable.

Thirty-two tabu search variations were considered for each of the four MAX 3-SATISFIABILITY
instances, with each tabu search variation experiment executed for thirty replications of 1000 iterations each
(where each of these replications were dcfined by a set of independent and identically distributed initial
solutions). Thesc thirty-two variations are obtained by considering all combinations of four short-term tabu
lengths (L = 5, 10, 25, 50), four long-term tabu frequencies (F = 5, 10, 25, 50), and the use of aspiration
criteria (4 = Yes, No). Instances UF200-0100 and UF225-0100 took 12 CPU minutes and 15 CPU minutes
while instances UUF125-0100 and UUF175-0100 took 5 CPU minutes and 9 CPU minutes for all thirty
replications (independent of the tabu search parameter values) on a DELL OPTIPLEX GX 270 with Intel
Pentium 1V Processor, 2.66 GHz clock speed with 1.0 GB of RAM implemented in Microsoft Visual C++
6.0.

To statistically compare the effcctiveness of the thirty-two tabu search variations, thrce different statistical
procedures were implemented. Table 1 in Jacobson and McLay (2009) rcports the best and worst objective
function values for each of the four instances, over the thirty-two tabu search parameter setting (L, F, and 4)
combinations that resulted in these values, obtained across all thirty replications. Note that when more than
one set of parameters are reported, this indicates that all these tabu search parameters resulted in the best or
worst solution reported. Also, for UF225-0100, none of the tabu search variations was able to find an optimal
solution (sevcral parameter setting resulted in solutions with one unsatisfied clause). Table 1, column (i)
represents the tabu search parameters associated with the smallest of the best objective funetion values across
the thirty-two tabu search variations and thirty replications, for each of the four problem instances, while
column (i1} represents the tabu search parameters associated with the largest of the best objective function
(i.c.. the worst of the best) values across the thirty-two tabu search variations and thirty replications, for each
of the four problem instances.

To identify which tabu scarch variation was most effective for the four problem instances, paired difference
t-tests were conducted (Walpole et. al. 2002), where the results from the mean best (smallest) objective value
found across thirty replications for each tabu search algorithm variation were paired to assess statistical
differences between the four short-term tabu lengths (L = 5, 10, 25, 50), the four long-tcrm tabu frequencies
(F=15,10, 25, 50), and the use of aspiration criteria (4 = Yes, No). The pairing was done such that all the
tabu search parameter values matched exeept for the parameter being tcsted. All the null hypotheses posed
were that the two variations under study yielded the same results, versus the appropriate one-sided alternative
hypothcsis. For example, from Table 2 in Jacobson and McLay (2009), for problem UF200-0100, Hy: pt4-ves
= Wa=no With Ha: py-ves < Ma-no resulted in the test statistic value T = 2.235 distributed Student-t with 15
degrees of freedom (sixtecn paired average data values, obtained from the mean bcst objective function value
across the thirty replications for thirty-two tabu scarch algorithm variations), with a corresponding p-value of
0.021. Therefore, the null hypothesis is rejected in favor of the alternative hypothesis for any size of the test
less than this p-value. For the short-term memory parameter F, six paired difference t-tests were obtained,
cach involving eight paired data values (eight paired average data values, obtained from the mean best
objective function value across the thirty replications for sixteen tabu search algorithm variations), hence the
resulting test statistics had 7 degrees of freedom. For long-term memory, six paired difference t-tests were
obtained, each involving eight paired data values (eight paired average data values, obtained from the mean
best objective function value across the thirty replications for sixtcen tabu search algorithm variations), hence
the resulting test statistics had 7 degrees of freedom. The full set of results with paired difference t-tests for
instances UF200-0100 and UUF175-0100 are recported in Tables 2 (Jacobson and McLay report a similar

table for instances UF225-0100 and UUF125-0100). Jacobson and McLay (2007) also report thc mean (‘7)

and the standard deviation (s) (computcd across the thirty replications) of thc best (smallest) objective
function values found during each of the algorithm executions, for each tabu search variation.

The paired difference results suggest that using an aspiration criterion results in statistically significant
superior results compared to not using an aspiration criterion for all four tabu problem instances. The average
best objective function values for experiments conducted with an aspiration criterion are smaller than for
those without an aspiration criterion, which is consistent with the results obtained with the paired difference t-
tests. For short-term memory, the parameter value L = 25 resulted in statistically significant superior results
compared with L = 5, 10 and 50. For long-term memory, the parameter values F = 10 and F = 25 result in
statistically significant superior results compared with F =5 and 50. Note that since all the testing is done
pairwise, conclusions drawn from this analysis that have implications across all the tabu search algorithm
variations are affected by the Bonferroni inequality (Hochberg and Tamhane 1987). However, since the total
number of hypotheses tested is small, and many of the p-values are less than .001, the resulting effcet on the
conclusions drawn from the analysis will be limited.
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Using the same data sets to analyze the different tabu seareh variations results in positive dependency
across these variations. Unfortunately, it would be diffieult to assess or measure this dependeney explieitly.
However. to account for the cffect of this dependency across the tabu seareh algorithm variations. Nelson
(1992) deseribes a single-stage multiple comparisons procedure for discrete event simulation optimization
that can be adapted to determine the most cffective tabu search variations from amongst the thirty-two tabu
seareh variations implemented. In partieular, for any two tabu search variations, labeled 7 and /, bascd on n (=
30) replieations, the standard deviation ean be estimated by

6,(n) = (S} (M +S7(n)-2S,(n)"*

where S ,2 (n) is the sample variance for tabu search variation i obtained over the » replieations and Sy(n) is

the sample covariance between tabu search variations / and j. This expression takes into account the data
dependency aeross the tabu search vartations, as noted above. From Jacobson and McLay (2007), the tabu
search parameters L = 25, F =25, A = YES yielded the overall best tabu scareh performanee for UF200-0100
and UF225-0100, and the tabu seareh parameters L = 25, F = 50, 4 = YES yielded the best tabu search
performance among variations using the aspiration criterion for UUF125-0100 and UUF175-0100. For the
corresponding instances, label these tabu search algorithm variations TS1. Thcrefore, the estimator &, (n)

was only eomputed for the fifteen pairs of tabu scareh variations with an aspiration criterion (since tabu
search with an aspiration eriterion yiclded better results than without an aspiration eriterion).

For each of the fifteen tabu search vartation with thc aspiration eriterion (denoted by thc parameters
L.F'YES(=4). the null hypotheses Hq: t4s) = z4.ryes 1s rejected in favor of the one-sided altcrnative
hypothesis Ha: grs1 < g rves at the @ level of the test if

T 151+ liant (G515 (M) 1)< T Ly, (6.1)

Tablcs 3 in Jacobson and McLay (2009) reports the level of the test at which the null hypotheses Ho: 75, =
My 4 would be rejeeted by the alternative hypothesis Ha: g5 < g4 for the fifteen tabu seareh variations
with the aspiration criterion, for instanees UF200-0100 and UUF175-0100 (Jaecobson and MeLay 2007 report
similar results for instances UF225-0100 and UUF125-0100). For all four problem instances, for ten or more
of the fiftcen tabu search variations, the null hypotheses were rejected in favor of the alternative hypotheses at
a level of test less than .001. Onee again, the Bonferroni inequality and the simultaneous testing of fifteen
tabu seareh variations mcan that the effeetive level for these tests is lower than what is reported. However,
given the level at whieh caeh of these tabu scareh variations are rejeeted, the effeetive level of the tests for the
fiftcen rejected tabu search variations all remain closc to zero.

To further analyze and compare the tabu scarch variations that were not rejectcd for each problem instance
in addition to the best tabu scarch variation TSI (between three and six total tabu scarch variations), paired
differcnce t-tests were used to determine if thcre was any statistically signifieant difference between them.
Thirty additional replieations of each tabu search variation were executed using the same initial solutions for
each problem instance. Thereforc, for each problem instance, replication i = 1,2,...,30 had the same initial
solution for each tabu search variation. The t-tests compared the difference between the best objeetive
function value in each of the thirty replieations between two tabu search variations. Therefore, for each
paired difference t-test, thcre were thirty paired data values between two tabu seareh variations, resulting in
29 degrees of freedom. These results are reported in Table 4 in Jacobson and MeLay (2009) for instances
UF200-0100 and UUF175-0100 (Jacobson and MeLay 2007 report similar results for instaneces UF225-0100
and UUF125-0100).

Nclson and Matejcik (1995) describe a simultancous ranking, selection, and multiple comparisons with thc
best two-stage proeedure to determine the best design across a discrete set of designs in stcady state disercte
cvent simulation. Similar to the Nelson single-stage proccdure, the structure of this procedure also makes it
adaptable to assess the effectiveness of different variations of a heuristic like tabu search for diserete
optimization problems. Jaeobson and McLay (2009) provide a ecomprehensive deseription of the Nelson and
Matcjeik two-stage proccdurc within the context of assessing the performance of tabu search variations.

In the first stage of the Nelson and Matejeik two-stage procedure, a set of independent tabu seareh
variation replieations are executed. The best solutions obtained aeross these variations are reported and used
to compute the sample varianee of the differenee, denoted by S$%. The number additional replications for each
tabu seareh variation required to obtain the desired eoverage level are determined. These additional
replieations are exeeuted and thc resulting samplc means (over all replications) for each tabu search variation
are reported and used to obtain multiple comparison with the best eonfidenee intervals. whieh are used to
assess and identify those tabu seareh variations that yield the best results.

For most problems, it would seem that this normality condition would be difficult, if not impossible, to
satisfy or to verify. Howevcr, for some discrete optimization problems, the objective functions are computed
as a sum or average, henee by thc central limit theorem. the normality assumption may indeed hold. For
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example, the MAX 3-SATISFIABILITY objective function is thc sum of m clauses, while thc objective
function for the traveling salesman problem is the sum of distances between cities. Therefore, although this
assumption may appear untenable to satisfy or to verify, there are problems where it may be reasonable.

The Nelson and Matejcik two-stage procedure assumes that the unknown variance-covariance matrix
exhibits a structure known as sphericity (Nelson and Matejcik 1995). For the application here, this would
mean the variances of all pairwise best objective function value diffcrenccs across tabu scarch variations are
equal, even though the marginal variances and covariances may be unequal. This suggests a weak type of
uniform covariance structure across tabu search variations. Note that it would be impossiblc to verify such a
result in practice. However, Nelson and Matejcik (1995) show that their procedure is cxtremely robust to
departures from sphericity, provided the covariances are positive, which is likely to be the case here since tabu
search variations all seek to optimize the objective function. They further note that the assumption of
sphericity may not be cxactly or even approximately satisfied in many situations, and hence, suggest that it
may be prudent to slightly inflate thc nominal coverage probability to ensure adcquate coverage. Given these
observations, the choice of a = .05 used bclow may result in a slight lower coverage probability. Goldsman
and Nelson (1998) provide a complete description of the Nelson and Matejcik two-stage procedure. Note that

the value of T,1[%), , | 15 in Step | (see Goldsman and Nelson 1998) can be obtaincd from Table 4 in

Hochberg and Tamhanc (1987) or Table B.3 in Bechhofer et al. (1995), while values that fall outside of the
tables can bc computed using a FORTRAN computer program (see Dunnett 1989),

Table 5 in Jacobson and McLay (2009) reports results with the Nelson and Matejcik two-stage procedurc
applicd to instances UF200-0100 and UUF175-0100 (Jacobson and McLay 2007 reports similar results for
instances UF225-0100 and UUF125-0100). For UF200-0100, N was computed to be 79, while for UUF175-
0100, N was computed to be 65 (both for 6= 0.75, a = 0.05 n, = 30, g = 2.57). For the same paramcter
values, with 5= 0.75, N was computed to be 45 and 31, respectively. By dcsign, N-30 additional replications
were executed for each of the instances. The rcsults reported in Table 5 suggcst that an appropriate choice of
parameters can help to identify those tabu search variations that are statistically indistinguishable. The results
obtained are all consistent with the conclusions drawn from the Nelson singlc-stage procedure.

1t would be interesting to further study other ways to use statistical analysis tools within this domain, hence
provide a well-defined framework for comparing and evaluating the performance of heuristics. Similar
statistical tests can be used to assess determine the optimal settings for heuristics for MAX 3-
SATISFIABILITY as well as for other hard discrete optimization problems. Moreover, using methods such as

common random numbecrs and antithetic random numbers may provide more insights into thc effectiveness of
such heuristics.

7. Other Research Results
In addition to the results reported above,, sevcral other results were obtained during the period of thc grant.
These results are briefly discussed here.

In the area of aviation security system design and analysis, McLay et al. (2008) cxamines selective
checked baggage screening systems that use a prescrecning system and two types of baggage screening
devices, one to screen checked baggage of passengers perceived as lower-risk and the other to screen checked
baggage of passengers perceived as higher-risk. A cost-benefit analysis of such selective checked baggagc
screening systems is reported. The analysis is performed for several scenarios that consider various levels of
accuracy of prescreening systems in assessing passenger risk. The results indicate that the accuracy of the
prescreening system in asscssing passenger risk is more important for reducing the number of successful
attacks than the effcctiveness of thc checked baggage screening dcvices at detecting threats when few
passengers are classified as higher-risk. Moreover, several selcctive screening scenarios are identified that
may be preferable to current checked baggage screening strategies. Lee et al. (2008) surveys operations
research activities directed toward analyzing and cnhancing the aviation security system. with the intent to be
informative and motivate the continual improvement of our nation’s transportation security.

In the area of scheduling problems and algorithm analysis., Kao et al. (2009) present a modified Branch
and Bound (B&B) algorithm called, the Branch, Bound and Remember (BB&R) algorithm, which uses the
Distributed Best First Search (DBFS) exploration strategy for solving the 1| »; | £ 1, scheduling problem, a
single machine scheduling problem where the objective is to find a schedule with the minimum total
tardiness. Memory-based dominance strategies are incorporated into the BB&R algorithm. In addition, a
modified memory-based dynamic programming algorithm is also introduced to efficiently compute lower
bounds for the 1| r; | £ t;. Computational results are reported, which shows that the BB&R algorithm with the
DBFS exploration strategy outperforms the best known algorithms reported in the literature.

In the area of asset allocation problems, the primary application of such research has becn to vaccine
formulary dcsign optimization. Hall ct al. (2008a) formulate an integer programming model that solves for
the maximum numbcr of vaccines that can be administered without any extraimmunization for pediatric
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immunization. An exaet dynamie programming algorithm and a randomized heuristie for the integer
programming model is also formulated and the heuristie is shown to be a harmonie approximation algorithm.
Computational results are reported on three sets of test problems, based on existing and future ehildhood
immunization sehedules, to demonstrate their eomputational effeetiveness and limitations. Given that future
ehildhood immunization sehedules may need to be solved for eaeh ehild, on a ease-by-ease basis, the results
reported here may provide a praetieal and valuable tool for the publie health eommunity. Hall et al. (2008b)
introduee the General Vaeeine Formulary Seleetion Problem (GVFSP) to model general ehildhood
immunization sehedules that may be used to illuminate these alternatives and ehoiees by seleeting a vaeeine
formulary that minimizes the eost of fully immunizing a ehild and the amount of extraimmunization. Both
exaet algorithms and heuristies for GVFSP are presented. A eomputational eomparison of these algorithms
and heuristies is presented for the Reeommended Childhood Immunization Sehedule, as well as several
randomly generated ehildhood immunization sehedules that are likely to be representative of future ehildhood
immunization sehedules. The results reported here provide both fundamental insights into the strueture of the
GVFSP models and algorithms, as well as praetieal value for the publie health eommunity.
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